Question: In the figure, \vec{OA} = \vec{a}, \vec{OB} = \vec{b} \; and \; \vec{AB} = 3 \vec{AP}. Find the value of \vec{OP} in terms of \vec{a} and \vec{b}.

Solution:

Given: \vec{OA} = \vec{a}, \vec{OB} = \vec{b} \; and \; \vec{AB} = 3 \vec{AP}

To find: value of \vec{OP}

Triangle - Vector Geometry


In ∆ OAB,
Using ∆ law of vector addition,
\vec{AB} = \vec{AO} + \vec{OB}

or, \vec{AB} = \vec{OB} - \vec{OA}

\therefore \vec{AB} = \vec{b} - \vec{a}

In ∆ OAP,
Using ∆ law of vector addition,
\vec{AP} = \vec{AO} + \vec{OP}

or, \vec{AP} = \vec{OP} - \vec{OA}

or, \vec{AP} = \vec{OP} - \vec{a}

We have,

\vec{AB} = 3 \vec{AP}
[ Put the respective values from above]

or, \vec{b} - \vec{a} = 3 ( \vec{OP} - \vec{a} )

or, \vec{b} - \vec{a} = 3 \vec{OP} - 3 \vec{a}

or, 3 \vec{a} - \vec{a} + vec{b} = 3 \vec{OP}

or, 2 \vec{a} + vec{b} = 3 \vec{OP}

\therefore \vec{OP} = \dfrac{1}{3} (2\vec{a} + \vec{b} )

Therefore, the required value of \vec{OP} is \frac{1}{3} (2\vec{a} + \vec{b} )