Question: In the figure, \vec{OA} = \vec{a}, \vec{OB} = \vec{b} \; and \; \vec{AB} = 3 \vec{AP}. Find the value of \vec{OP} in terms of \vec{a} and \vec{b}.
Solution:
Given: \vec{OA} = \vec{a}, \vec{OB} = \vec{b} \; and \; \vec{AB} = 3 \vec{AP}
To find: value of \vec{OP}

In ∆ OAB,
Using ∆ law of vector addition,
\vec{AB} = \vec{AO} + \vec{OB}
or, \vec{AB} = \vec{OB} - \vec{OA}
\therefore \vec{AB} = \vec{b} - \vec{a}
In ∆ OAP,
Using ∆ law of vector addition,
\vec{AP} = \vec{AO} + \vec{OP}
or, \vec{AP} = \vec{OP} - \vec{OA}
or, \vec{AP} = \vec{OP} - \vec{a}
We have,
\vec{AB} = 3 \vec{AP}
[ Put the respective values from above]
or, \vec{b} - \vec{a} = 3 ( \vec{OP} - \vec{a} )
or, \vec{b} - \vec{a} = 3 \vec{OP} - 3 \vec{a}
or, 3 \vec{a} - \vec{a} + vec{b} = 3 \vec{OP}
or, 2 \vec{a} + vec{b} = 3 \vec{OP}
\therefore \vec{OP} = \dfrac{1}{3} (2\vec{a} + \vec{b} )
Therefore, the required value of \vec{OP} is \frac{1}{3} (2\vec{a} + \vec{b} )
0 Comments
You can let us know your questions in the comments section as well.