Question: In the given diagram ABCD is a pentagon, prove that: $\vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EA} = 0$
Solution:
To prove: $\vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EA} = 0$
Using ∆ law of vector addition in ∆ ABC,
$\vec{AC} = \vec{AB} + \vec{BC}$ - (i)
Using ∆ law of vector addition in ∆ ADE,
$\vec{DA} = \vec{DE} + \vec{EA}$ - (ii)
Using ∆ law of vector addition in ∆ ADC,
$\vec{DC} = \vec{DA} + \vec{AC}$ - (iii)
Taking LHS,
$= \vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EA} $
[ Replace $\vec{AC} = \vec{AB} + \vec{BC}$ from equation (i) ]
$= \vec{AC} + \vec{CD} + \vec{DE} + \vec{EA} $
[ Replace $\vec{DA} = \vec{DE} + \vec{EA}$ from equation (ii) ]
$= \vec{AC} + \vec{CD} + \vec{DA}$
$= \vec{AC} + \vec{DA} + \vec{CD}$
[ Replace $\vec{DC} = \vec{DA} + \vec{AC}$ from equation (iii) ]
$= \vec{DC} + \vec{CD}$
$= \vec{DC} - \vec{DC}$
$= 0$
= RHS
#proved
0 Comments
You can let us know your questions in the comments section as well.