Question: In the given figure, ABCD is a parallelogram. If \vec{OA} = \vec{a}, \vec{OB} = \vec{b}, and \; \vec{OC} = \vec{c}, find \; \vec{OD}.
Solution:
To find: value of \vec{OD}
Given, \vec{OA} = \vec{a}, \vec{OB} = \vec{b}, and \; \vec{OC} = \vec{c}
ABCD is a parallelogram. So, opposite sides are equal and opposite vector in same direction are equal. or, \vec{AB} = \vec{DC}

Now,
In ∆ OAB,
Using ∆ law of vector addition,
\vec{AB} = \vec{AO} + \vec{OB}
or, \vec{AB} = \vec{OB} - \vec{OA}
\therefore \vec{AB} = \vec{b} - \vec{a}
From above,
\vec{DC} = \vec{AB} = \vec{b} - \vec{a}
In ∆ ODC,
Using ∆ law of vector addition,
\vec{OD} = \vec{OC} + \vec{CD}
or, \vec{OD} = \vec{c} - \vec{DC}
or, \vec{OD} = \vec{c} - ( \vec{b} - \vec{a})
or, \vec{OD} = \vec{c} - \vec{b} + \vec{a}
\therefore \vec{OD} = \vec{a} - \vec{b} + \vec{C}
Hence, the required value of \vec{OD} is \vec{a} - \vec{b} + \vec{C}.
0 Comments
You can let us know your questions in the comments section as well.