Question: In the given figure, \vec{OA} = \vec{a} and \vec{OB} = \vec{b}. If \vec{AC} = 3 \vec{AB}, find \vec{OC}.

Solution:

Given: \vec{OA} = \vec{a} \; and \; \vec{OB} = \vec{b}, \vec{AC} = 3 \vec{AB}

To find: value of \vec{OC}

Triangle - Vector Geometry


In ∆ OAB,
Using ∆ law of vector addition,

\vec{AB} = \vec{AO} + \vec{OB}

or, \vec{AB} = \vec{OB} - \vec{OA}

or, \vec{AB} = \vec{b} - \vec{a}

In ∆ OAC,
Using ∆ law of vector addition,

\vec{AC} = \vec{AO} + \vec{OC}

or, \vec{AC} = \vec{OC} - \vec{OA}

or, \vec{AC} = \vec{OC} - \vec{a}

We have,

\vec{AC} = 3 \vec{AB}

[ Put value of \vec{AC} from equation (ii) and value of \vec{AB} from equation (i) ]

or, \vec{OC} - \vec{a} = 3( \vec{b} - \vec{a})

or, \vec{OC} = 3\vec{b} -3vec{a} + \vec{a}

\therefore \vec{OC} = -2\vec{a} + 3\vec{b}

Hence, the required value of \vec{OC} is -2\vec{a} + 3\vec{b}.