Question: In the given hexagon ABCDEF, prove that $\vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FA} = 0$
Solution:
To prove: $\vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FA} = 0$
In a regular hexagon, opposite and parallel vectors in same direction are equal.
So,
$\vec{AB} = \vec{ED}$
$\vec{FA} = \vec{DC}$
$\vec{BC} = \vec{FE}$
Taking LHS,
$= \vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FA}$
[Put $\vec{AB} = \vec{ED}$, $\vec{FA} = \vec{DC}$, and $\vec{BC} = \vec{FE}$ from above]
$= \vec{ED} + \vec{FE} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{DC}$
$= \vec{ED} + \vec{DE} + \vec{FE} + \vec{EF} + \vec{CD} + \vec{DC}$
$= - \vec{DE} + \vec{DE} + \vec{FE} - \vec{FE} + \vec{CD} - \vec{CD}$
$= 0 + 0 + 0$
$= 0$
= RHS
#proved
2 Comments
We wish you all the best for your Secondary Education Examination (2077) that you all will be appearing in few months from now.
ReplyDeletegud
DeleteYou can let us know your questions in the comments section as well.