Question: In the given hexagon ABCDEF, prove that \vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FA} = 0


Solution:

To prove: \vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FA} = 0

Hexagon - Vector Geometry


In a regular hexagon, opposite and parallel vectors in same direction are equal.

So,
\vec{AB} = \vec{ED}
\vec{FA} = \vec{DC}
\vec{BC} = \vec{FE}

Taking LHS,

= \vec{AB} + \vec{BC} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{FA}

[Put \vec{AB} = \vec{ED}, \vec{FA} = \vec{DC}, and \vec{BC} = \vec{FE} from above]

= \vec{ED} + \vec{FE} + \vec{CD} + \vec{DE} + \vec{EF} + \vec{DC}

= \vec{ED} + \vec{DE} + \vec{FE} + \vec{EF} +  \vec{CD} + \vec{DC}

= - \vec{DE} + \vec{DE} + \vec{FE} - \vec{FE} + \vec{CD} - \vec{CD}

= 0 + 0 + 0

= 0
= RHS
#proved