Question: Prove that $\vec{PQ} + \vec{QR} + \vec{RS} + \vec{SP} = 0$ in the given quadrilateral PQRS.
Solution:
To prove: $\vec{PQ} + \vec{QR} + \vec{RS} + \vec{SP} = 0$
Construction: Join P and R.
Proof:
Using ∆ law of vector addition,
$\vec{PR} = \vec{PQ} + \vec{QR}$ - (i)
Also,
$\vec{RP} = \vec{RS} + \vec{SP}$ - (ii)
Taking LHS,
$= \vec{PQ} + \vec{QR} + \vec{RS} + \vec{SP}$
[Put value of $\vec{PR} = \vec{PQ} + \vec{QR}$ from equation (i) ]
$= (\vec{PR}) + \vec{RS} + \vec{SP}$
[Put value of $\vec{RP} = \vec{RS} + \vec{SP}$ from equation (ii) ]
$= \vec{PR} + \vec{RP}$
$= \vec{PR} - \vec{PR}$
$= 0$
RHS
#proved
0 Comments
You can let us know your questions in the comments section as well.