Question: Show that the equation 10x² -11xy -6y² -12x +18y = 0 represents two straight lines. Find the angle between them.
Solution:
Given,
Single equation of two straight lines is
10x² -11xy -6y² -12x +18y = 0
or, 10x² - (15-4)xy -6y² -6(2x -3y) = 0
or, 10x² -15xy +4xy -6y² -6(2x -3y) = 0
or, 5x(2x -3y) +2y(2x -3y) -6(2x -3y) = 0
or, (5x +2y -6)(2x -3y) = 0
So, equation of line 1 is (5x +2y -6 = 0)
And, equation of line 2 is (2x -3y = 0).
Also,
Slope of line 1 (5x +2y -6 = 0) (m_1) = - \frac{coefficient \; of \; x}{coefficient \; of y}
= - \frac{5}{2}
Slope of line 2 (2x -3y = 0) (m_2) = - \frac{coefficient \; of \; x}{coefficient \; of y}
= - \frac{2}{-3}
= \frac{2}{3}
Now,
Let the angle between line 1 and line 2 be \theta, we have,
or, tan \theta = \pm \dfrac{m_1 - m_2}{1 + m_1m_2}
or, tan \theta = \pm \dfrac{-\frac{5}{2} - \frac{2}{3} } { 1 + ( - \frac{5}{2}) × \frac{2}{3} }
or, tan \theta = \pm \dfrac{- ( \frac{15 +4}{6} )}{1 - \frac{5}{3}}
or, tan \theta = \pm \dfrac{- \frac{19}{6}}{\frac{3-5}{3}
or, tan \theta = \pm \dfrac{- \frac{19}{6}}{\frac{-2}{3}}
or, tan \theta = \pm \left ( \frac{-19}{6} × \frac{3}{-2} \right )
or, tan \theta = \pm \frac{-57}{-12}
or, tan \theta = \pm \frac{57}{12}
Taking positive sign,
or, tan \theta = \frac{57}{12}
or, \theta = tan^{-1} (4.75)
\therefore \theta = 78.11°
Taking negative sign,
or, tan \theta = - \frac{57}{12}
or, tan \theta = - 4.75
or, \theta = tan^{-1} (-4.75)
\therefore \theta = 101.88°
Hence, the required angle between the two lines is either 78.11° or 101.88°.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.