Question: Prove that $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$ in the given triangle ABC.
Solution:
To prove: $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0$
We know,
In ∆ABC,
Using triangle law of vector addition,
$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$ - (i)
Taking LHS,
$= \vec{AB} + \vec{BC} + \vec{CA}$
$= \vec{AB} + \vec{BC} - \vec{AC}$
Put value of $\vec{AC}$ from equation (i)
$= \vec{AB} + \vec{BC} - ( \vec{AB} + \vec{BC})$
$= \vec{AB} + \vec{BC} - \vec{AB} - \vec{BC}$
$= 0$
RHS #proved.
0 Comments
You can let us know your questions in the comments section as well.