Question: Prove that \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0 in the given triangle ABC.

Solution:

To prove: \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0

Vector Geometry


We know,

In ∆ABC,
Using triangle law of vector addition,
\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} - (i)

Taking LHS,

= \vec{AB} + \vec{BC} + \vec{CA}

= \vec{AB} + \vec{BC} - \vec{AC}

Put value of \vec{AC} from equation (i)

= \vec{AB} + \vec{BC} - ( \vec{AB} + \vec{BC})

= \vec{AB} + \vec{BC} - \vec{AB} - \vec{BC}

= 0

RHS #proved.