Question: Prove that \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0 in the given triangle ABC.
Solution:
To prove: \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = 0

We know,
In ∆ABC,
Using triangle law of vector addition,
\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} - (i)
Taking LHS,
= \vec{AB} + \vec{BC} + \vec{CA}
= \vec{AB} + \vec{BC} - \vec{AC}
Put value of \vec{AC} from equation (i)
= \vec{AB} + \vec{BC} - ( \vec{AB} + \vec{BC})
= \vec{AB} + \vec{BC} - \vec{AB} - \vec{BC}
= 0
RHS #proved.
0 Comments
You can let us know your questions in the comments section as well.