Question: Solve: $\sqrt{x} + \sqrt{5+x} = \dfrac{15}{\sqrt{5+x}}$
Solution:
Given,
$\sqrt{x} + \sqrt{5+x} = \dfrac{15}{\sqrt{5+x}}$
$or, \sqrt{x} = \dfrac{15}{\sqrt{5+x} }- \sqrt{5+x}$
$or, \sqrt{x} = \dfrac{15 - (\sqrt{5+x})(\sqrt{5+x})}{\sqrt{5+x}}$
$or, \sqrt{x} = \dfrac{15 - \sqrt{(5+x)(5+x)}}{\sqrt{5+x}}$
$or, \sqrt{x} (\sqrt{5+x}) = 15 - \sqrt{(5+x)²}$
$or, \sqrt{x(5+x)} = 15 - (5+x)$
$or, \sqrt{x(5+x)} = 15 - 5-x$
$or, \sqrt{x(5+x)} = 10 - x$
Squaring both sides
$or, (\sqrt{x(5+x)} )² = (10-x)²$
$or, x(5+x) = 10² -2×10×x + x²$
$or, 5x +x² = 100 - 20x +x²$
$or, x² - x² +5x +20x = 100$
$or, 25x = 100$
$or, x = \dfrac{100}{25}$
$\therefore x = 4$
0 Comments
You can let us know your questions in the comments section as well.