Question: Solve: \sqrt{x} + \sqrt{5+x} = \dfrac{15}{\sqrt{5+x}}
Solution:
Given,
\sqrt{x} + \sqrt{5+x} = \dfrac{15}{\sqrt{5+x}}
or, \sqrt{x} = \dfrac{15}{\sqrt{5+x} }- \sqrt{5+x}
or, \sqrt{x} = \dfrac{15 - (\sqrt{5+x})(\sqrt{5+x})}{\sqrt{5+x}}
or, \sqrt{x} = \dfrac{15 - \sqrt{(5+x)(5+x)}}{\sqrt{5+x}}
or, \sqrt{x} (\sqrt{5+x}) = 15 - \sqrt{(5+x)²}
or, \sqrt{x(5+x)} = 15 - (5+x)
or, \sqrt{x(5+x)} = 15 - 5-x
or, \sqrt{x(5+x)} = 10 - x
Squaring both sides
or, (\sqrt{x(5+x)} )² = (10-x)²
or, x(5+x) = 10² -2×10×x + x²
or, 5x +x² = 100 - 20x +x²
or, x² - x² +5x +20x = 100
or, 25x = 100
or, x = \dfrac{100}{25}
\therefore x = 4
0 Comments
You can let us know your questions in the comments section as well.