Question: Solve: \sqrt{x} = 6 - \sqrt{x -24}
Solution:
Given,
\sqrt{x} = 6 - \sqrt{x -24}
or, \sqrt{x} + \sqrt{x -24} = 6
or, \sqrt{x -24} = 6 - \sqrt{x}
[ Squaring both sides ]
or, (\sqrt{x -24})^2 = (6 - \sqrt{x})^2
or, x -24 = 6^2 - 2×6×\sqrt{x} + (\sqrt{x})^2
or, x - 24 = 36 - 12\sqrt{x} + x
or, x - x +12 \sqrt{x} = 36 - 24
or, 12\sqrt{x} = 12
or, \sqrt{x} = \dfrac{12}{12}
or, \sqrt{x} = 1
or, \sqrt{x} = \sqrt{1}
\therefore x = 1
= Answer
0 Comments
You can let us know your questions in the comments section as well.