Question: Solve: $\sqrt{x} = 6 - \sqrt{x -24}$
Solution:
Given,
$\sqrt{x} = 6 - \sqrt{x -24}$
$or, \sqrt{x} + \sqrt{x -24} = 6$
$or, \sqrt{x -24} = 6 - \sqrt{x}$
[ Squaring both sides ]
$or, (\sqrt{x -24})^2 = (6 - \sqrt{x})^2$
$or, x -24 = 6^2 - 2×6×\sqrt{x} + (\sqrt{x})^2$
$or, x - 24 = 36 - 12\sqrt{x} + x$
$or, x - x +12 \sqrt{x} = 36 - 24$
$or, 12\sqrt{x} = 12$
$or, \sqrt{x} = \dfrac{12}{12}$
$or, \sqrt{x} = 1$
$or, \sqrt{x} = \sqrt{1}$
$\therefore x = 1$
= Answer
0 Comments
You can let us know your questions in the comments section as well.