Question: Solve: $\sqrt{x -7} = \sqrt{x} - 1$
Solution:
Given,
$\sqrt{x -7} = \sqrt{x} - 1$
[ squaring both sides ]
$or, (\sqrt{x -7})^2 = (\sqrt{x} - 1)^2$
$or, x -7 = (\sqrt{x})^2 - 2× \sqrt{x}×1 + 1^2$
$or, x - 7 = x -2\sqrt{x} +1$
$or, x - x = - 2\sqrt{x} + 1 +7$
$or, 0 + 2\sqrt{x} = 8$
$or, \sqrt{x} = \dfrac{8}{2}$
$or, \sqrt{x} = 4$
[ Squaring both sides ]
$or, (\sqrt{x})^2 = 4^2$
$\therefore x = 16$
= Answer
0 Comments
You can let us know your questions in the comments section as well.