Question: Solve: \sqrt{x -7} = \sqrt{x} - 1
Solution:
Given,
\sqrt{x -7} = \sqrt{x} - 1
[ squaring both sides ]
or, (\sqrt{x -7})^2 = (\sqrt{x} - 1)^2
or, x -7 = (\sqrt{x})^2 - 2× \sqrt{x}×1 + 1^2
or, x - 7 = x -2\sqrt{x} +1
or, x - x = - 2\sqrt{x} + 1 +7
or, 0 + 2\sqrt{x} = 8
or, \sqrt{x} = \dfrac{8}{2}
or, \sqrt{x} = 4
[ Squaring both sides ]
or, (\sqrt{x})^2 = 4^2
\therefore x = 16
= Answer
0 Comments
You can let us know your questions in the comments section as well.