Question: Solve: \dfrac{\sqrt{x} + \sqrt{7}}{\sqrt{x} - \sqrt{7}} = 3
Solution:
Given,
\dfrac{\sqrt{x} + \sqrt{7}}{\sqrt{x} - \sqrt{7}} = 3
or, \sqrt{x} - \sqrt{7} = 3(\sqrt{x} - \sqrt{7})
or, \sqrt{x} - \sqrt{7}= 3\sqrt{x} - 3\sqrt{7}
or, 3\sqrt{7} + \sqrt{7} = 3\sqrt{x} - \sqrt{x}
or, 4\sqrt{7} = 2\sqrt{x}
or, 2\sqrt{x} = 4\sqrt{7}
or, \sqrt{x} = \dfrac{4\sqrt{7}}{2}
or, \sqrt{x} = 2\sqrt{7}
[ Squaring both sides ]
or, (\sqrt{x})^2 = (2\sqrt{7})^2
or, x = 4 * 7
\therefore x = 28
= Answer
0 Comments
You can let us know your questions in the comments section as well.