Question: Solve: $\sqrt{x +8} -2 = \sqrt{x}$
Solution:
Given,
$\sqrt{x +8} -2 = \sqrt{x}$
$or, \sqrt{x+8} = \sqrt{x} + 2$
[ Squaring both sides ]
$or, (\sqrt{x+8})^2 = (\sqrt{x} + 2)^2$
$or, x +8 = (\sqrt{x})^2 + 2×\sqrt{x}×2 + 2^2$
$or, x + 8 = x + 4\sqrt{x} + 4$
$or, x -x + 8 -4 = 4\sqrt{x}$
$or, 4 = 4\sqrt{x}$
$or, 4\sqrt{x} = 4$
$or, \sqrt{x} = \dfrac{4}{4}$
$or, \sqrt{x} = 1$
$or, \sqrt{x} = \sqrt{1}$
$\therefore x = 1$
= Answer
0 Comments
You can let us know your questions in the comments section as well.