Question: Solve: \sqrt{x +8} -2 = \sqrt{x}
Solution:
Given,
\sqrt{x +8} -2 = \sqrt{x}
or, \sqrt{x+8} = \sqrt{x} + 2
[ Squaring both sides ]
or, (\sqrt{x+8})^2 = (\sqrt{x} + 2)^2
or, x +8 = (\sqrt{x})^2 + 2×\sqrt{x}×2 + 2^2
or, x + 8 = x + 4\sqrt{x} + 4
or, x -x + 8 -4 = 4\sqrt{x}
or, 4 = 4\sqrt{x}
or, 4\sqrt{x} = 4
or, \sqrt{x} = \dfrac{4}{4}
or, \sqrt{x} = 1
or, \sqrt{x} = \sqrt{1}
\therefore x = 1
= Answer
0 Comments
You can let us know your questions in the comments section as well.