1. Solve:

a) x² - 9 = 0

Solution:
Given,
x² - 9 = 0
or, x² = 9
or, x = \pm \sqrt{9}
$\therefore x = \pm 3


c) \frac{9x²}{5} = \frac{5}{4}

Solution:
Given,
\dfrac{9x²}{5} = \dfrac{5}{4}
or, 4 × 9x² = 5×5
or, 36x² = 25
or, x² = \dfrac{25}{36}
or, x = \pm \sqrt{\frac{25}{36}}
\therefore x = \pm \dfrac{5}{6}


e) x² - 5x +6 = 0

Solution:
Given,
x² - 5x +6 = 0
or, x² - (2+3)x +6 = 0
or, x² -2x -3x +6 = 0
or, x(x -2) -3(x -2) = 0
or, (x -3)(x -2) = 0
Either,
x -3 = 0
\therefore x = 3
Or,
x -2 = 0
\therefore x = 2
Hence, x = 2 or 3.


g) x² - 2x -8 = 0

Solution:
Given,
x² -2x -8 = 0
or, x² - (4-2)x -8 = 0
or, x² -4x +2x -8 = 0
or, x(x -4) +2(x -4) = 0
or, (x +2)(x -4) = 0
Either,
x +2 = 0
\therefore x = -2
Or,
x -4 = 0
\therefore x = 4
Hence, x = -2 or 4.


i) 5x² +8x -21 = 0

Solution:
Given,
5x² + 8x -21 = 0
or, 5x² + (15-7)x -21 = 0
or, 5x² + 15x -7x -21 = 0
or, 5x(x +3) - 7(x +3) = 0
or, (5x -7)(x +3) = 0
Either,
5x -7 = 0
or, 5x = 7
\therefore x = \frac{7}{5}
Or,
x +3 = 0
\therefore x = -3
Hence, x = -3 or \frac{7}{5}.

Follow up this link for more solutions of quadratic equation from vedanta Excel in Mathematics Book Class 10.

#SciPiPupil