Question: Solve: $\sqrt{x} + \sqrt{x+13} = \dfrac{91}{\sqrt{x+13}}$
Solution:
Given,
$\sqrt{x} + \sqrt{x+13} = \dfrac{91}{\sqrt{x+13}}$
$or, \sqrt{x} = \dfrac{91}{\sqrt{x+13}} - \sqrt{x+13}$
$or, \sqrt{x} = \dfrac{91 - (\sqrt{x+13})(\sqrt{x+13})}{\sqrt{x+13}}$
$or, \sqrt{x} (\sqrt{x + 13} = 91 - \sqrt{(x+13)^2}$
$or, \sqrt{x(x+13)} = 91 - (x+13)$
$or, \sqrt{x(x+13)} = 91 -x -13$
$or, \sqrt{x(x+13)} = 78 - x $
Squaring both sides
$or, (\sqrt{x(x+13)})^2 = (78-x)^2 $
$or, x(x+13) = 78^2 - 2*78*x + x^2 $
$or, x^2 + 13x = 6084 - 156 x + x^2$
$or, x^2 - x^2 +13x + 156c = 6084$
$or, 169x = 6084$
$or, x = \dfrac{6084}{169}$
$\therefore x = 36$
= Answer
0 Comments
You can let us know your questions in the comments section as well.