Question: Solve: \sqrt{x} + \sqrt{x+13} = \dfrac{91}{\sqrt{x+13}}
Solution:
Given,
\sqrt{x} + \sqrt{x+13} = \dfrac{91}{\sqrt{x+13}}
or, \sqrt{x} = \dfrac{91}{\sqrt{x+13}} - \sqrt{x+13}
or, \sqrt{x} = \dfrac{91 - (\sqrt{x+13})(\sqrt{x+13})}{\sqrt{x+13}}
or, \sqrt{x} (\sqrt{x + 13} = 91 - \sqrt{(x+13)^2}
or, \sqrt{x(x+13)} = 91 - (x+13)
or, \sqrt{x(x+13)} = 91 -x -13
or, \sqrt{x(x+13)} = 78 - x
Squaring both sides
or, (\sqrt{x(x+13)})^2 = (78-x)^2
or, x(x+13) = 78^2 - 2*78*x + x^2
or, x^2 + 13x = 6084 - 156 x + x^2
or, x^2 - x^2 +13x + 156c = 6084
or, 169x = 6084
or, x = \dfrac{6084}{169}
\therefore x = 36
= Answer
0 Comments
You can let us know your questions in the comments section as well.