Question: Solve: $\dfrac{\sqrt{x +2} - \sqrt{x -2}}{\sqrt{x +2} + \sqrt{x -2}} = \dfrac{1}{2}$
Solution:
Given,
$\dfrac{\sqrt{x +2} - \sqrt{x -2}}{\sqrt{x +2} +\sqrt{x -2}} = \dfrac{1}{2}$
$or, 2(\sqrt{x +2} - \sqrt{x -2}) = 1 ( \sqrt{x +2} +\sqrt{x -2})$
$or, 2\sqrt{x +2} - 2 \sqrt{x -2} = \sqrt{x +2} + \sqrt{x -2}$
$or, 2\sqrt{x +2} - \sqrt{x +2} = 2\sqrt{x -2} + \sqrt{x -2}$
$or, \sqrt{x +2} = 3 \sqrt{x -2}$
Squaring both sides
$or, (\sqrt{x+2})^2 = (3 \sqrt{x-2})^2$
$or, x +2 = 9(x -2)$
$or, x +2 = 9x -18$
$or, 18+2 = 9x -x$
$or, 20 = 8x$
$or, x = \dfrac{20}{8}$
$\therefore x = \dfrac{5}{2}$
= Answer
1 Comments
x+y÷(p-q)(p-r)
ReplyDeleteYou can let us know your questions in the comments section as well.