Question: Solve: \dfrac{\sqrt{x +2} - \sqrt{x -2}}{\sqrt{x +2} + \sqrt{x -2}} = \dfrac{1}{2}
Solution:
Given,
\dfrac{\sqrt{x +2} - \sqrt{x -2}}{\sqrt{x +2} +\sqrt{x -2}} = \dfrac{1}{2}
or, 2(\sqrt{x +2} - \sqrt{x -2}) = 1 ( \sqrt{x +2} +\sqrt{x -2})
or, 2\sqrt{x +2} - 2 \sqrt{x -2} = \sqrt{x +2} + \sqrt{x -2}
or, 2\sqrt{x +2} - \sqrt{x +2} = 2\sqrt{x -2} + \sqrt{x -2}
or, \sqrt{x +2} = 3 \sqrt{x -2}
Squaring both sides
or, (\sqrt{x+2})^2 = (3 \sqrt{x-2})^2
or, x +2 = 9(x -2)
or, x +2 = 9x -18
or, 18+2 = 9x -x
or, 20 = 8x
or, x = \dfrac{20}{8}
\therefore x = \dfrac{5}{2}
= Answer
1 Comments
x+y÷(p-q)(p-r)
ReplyDeleteYou can let us know your questions in the comments section as well.