Question: Solve: \dfrac{\sqrt{x+4} + \sqrt{2} }{ \sqrt{x +4} - \sqrt{2}} = 2
Solution:
Given,
\dfrac{\sqrt{x+4} + \sqrt{2} }{ \sqrt{x +4} - \sqrt{2}} = 2
or, \sqrt{x+4} + \sqrt{2} = 2( \sqrt{x +4} - \sqrt{2})
or, \sqrt{x+4} + \sqrt{2} = 2 \sqrt{x +4} - 2\ sqrt{2})
or, 2\sqrt{2} + \sqrt{2} = 2\sqrt{x +4} - \sqrt{x +4}
or, 3\sqrt{2} = \sqrt{x +4}
or, \sqrt{x +4} = 3\sqrt{2}
squaring both sides
or, (\sqrt{x+4})² = (3\sqrt{2})²
or, x +4 = 9×2
or, x +4 = 18
or, x = 18-4
\therefore x = 14
= Answer
0 Comments
You can let us know your questions in the comments section as well.