Question: Solve: $\dfrac{\sqrt{x+4} + \sqrt{2} }{ \sqrt{x +4} - \sqrt{2}} = 2$
Solution:
Given,
$\dfrac{\sqrt{x+4} + \sqrt{2} }{ \sqrt{x +4} - \sqrt{2}} = 2$
$or, \sqrt{x+4} + \sqrt{2} = 2( \sqrt{x +4} - \sqrt{2})$
$or, \sqrt{x+4} + \sqrt{2} = 2 \sqrt{x +4} - 2\ sqrt{2})$
$or, 2\sqrt{2} + \sqrt{2} = 2\sqrt{x +4} - \sqrt{x +4}$
$or, 3\sqrt{2} = \sqrt{x +4}$
$or, \sqrt{x +4} = 3\sqrt{2}$
squaring both sides
$or, (\sqrt{x+4})² = (3\sqrt{2})²$
$or, x +4 = 9×2$
$or, x +4 = 18$
$or, x = 18-4$
$\therefore x = 14$
= Answer
0 Comments
You can let us know your questions in the comments section as well.