Question: Solve: \sqrt{x^2 + 5} - 1 = x

Solution:
Given,

\sqrt{x^2 + 5} - 1 = x

or, \sqrt{x^2 + 5} = x +1

[ Squaring both sides ]

or, (\sqrt{x^2 + 5} )^2 = (x +1)^2

or, x^2 + 5 = x^2 + 2x + 1

or, x^2 - x^2 + 5 - 1 = 2x

or, 0 +4 = 2x

or, 2x = 4

or, x = \dfrac{4}{2}

\therefore x = 2
= Answer