Question: Solve \dfrac{y-25}{5+\sqrt{y}} = 4 + \dfrac{\sqrt{y} -5 }{5}
Solution:
Given,
\dfrac{y-25}{5+\sqrt{y}} = 4 + \dfrac{\sqrt{y} -5 }{5}
or, \dfrac{(\sqrt{y})^2 - 5^2}{\sqrt{y} + 5} = 4 + \dfrac{\sqrt{y} -5 }{5}
or, \dfrac{(\sqrt{y} +5)(\sqrt{x} -5)}{\sqrt{y} + 5} = 4 + \dfrac{\sqrt{y} -5 }{5}
or, \sqrt{y} - 5 = 4+ \dfrac{\sqrt{y} -5 }{5}
or, \sqrt{y} -5 - \dfrac{\sqrt{y} -5 }{5} = 4
or, \dfrac{5(\sqrt{y}-5) - (\sqrt{y} - 5)}{5} = 4
or, 5\sqrt{y} - 25 - \sqrt{y} + 5 = 4*5
or, 4\sqrt{y} -20 = 20
or, 4\sqrt{y} = 20 +20
or, 4\sqrt{y} = 40
or, \sqrt{y} = \dfrac{40}{4}
or, \sqrt{y} = 10
squaring both sides
or, (\sqrt{y})^2 = 10^2
\therefore y = 100
0 Comments
You can let us know your questions in the comments section as well.