Question: Prove the following trigonometric identity:
$1 + tan 4A.tan 2A = sec 4A$
Solution:
Taking LHS
$ = 1 + tan 4A.tan 2A$
$= 1 + tan(2×2A) . tan2A$
Remember: $tan2A = \dfrac{2 tanA}{1 - tan^2 A}$
$= 1 + \dfrac{2tan2A}{1 - tan^2 2A} . tan2A$
$= 1 + \dfrac{2 tan^2 2A}{1 - tan^2 2A}$
$= \dfrac{(1 - tan^2 2A) + 2tan^2 2A}{1 - tan^2 2A}$
$= \dfrac{1 + tan^2 2A}{1 - tan^2 2A}$
Remember: $cos 2A = \dfrac{1 - tan^2A}{1 +tan^2 A}$
$= \dfrac{1}{cos(2×2A)}$
$= \dfrac{1}{cos 4A}$
$= sec 4A$
= RHS
#proved
Other Solutions from Multiple Angles
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.