Question: Prove the following trigonometric identity:
1 + tan 4A.tan 2A = sec 4A


Solution:

Taking LHS

= 1 + tan 4A.tan 2A

= 1 + tan(2×2A) . tan2A

Remember: tan2A = \dfrac{2 tanA}{1 - tan^2 A}

= 1 + \dfrac{2tan2A}{1 - tan^2 2A} . tan2A

= 1 + \dfrac{2 tan^2 2A}{1 - tan^2 2A}

= \dfrac{(1 - tan^2 2A) + 2tan^2 2A}{1 - tan^2 2A}

= \dfrac{1 + tan^2 2A}{1 - tan^2 2A}

Remember: cos 2A = \dfrac{1 - tan^2A}{1 +tan^2 A}

= \dfrac{1}{cos(2×2A)}

= \dfrac{1}{cos 4A}

= sec 4A

= RHS

#proved

Other Solutions from Multiple Angles

#SciPiPupil