Let the Cost Price be represented by CP.
Here,
Marked Price = $CP ( 1+ \frac{25}{100})$
$= CP × \frac{125}{100}$
$= \frac{5CP}{4}$
And,
When discount percentage (d%) = 5%,
SP = MP ( 1 - $\frac{d%}{100}$)
$= \frac{5CP}{4} × (1 - \frac{5}{100})$
$= \frac{5CP}{4} × \frac{95}{100}$
$= \frac{95CP}{80}$
Now,
Profit percentage = $\dfrac{SP -CP}{CP} × 100%$
$= \dfrac{ \frac{95 CP}{80} - CP}{CP} × 100%$
$= \dfrac{ \frac{95 CP - 80 CP}{80}}{CP} × 100%$
$= \dfrac{15CP}{80} × \dfrac{1}{CP} × 100%$
$= \dfrac{15}{80} × 100%$
$= 18.75%$
Hence, the required profit percentage in the given transaction is 18.75%.
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.