Solution:

Let the Cost Price be represented by CP.

Here,
Marked Price = $CP ( 1+ \frac{25}{100})$

$= CP  × \frac{125}{100}$

$= \frac{5CP}{4}$


And,
When discount percentage (d%) = 5%,

SP = MP ( 1 - $\frac{d%}{100}$)

$= \frac{5CP}{4} × (1 - \frac{5}{100})$

$= \frac{5CP}{4} × \frac{95}{100}$

$= \frac{95CP}{80}$


Now,
Profit percentage = $\dfrac{SP -CP}{CP} × 100%$

$= \dfrac{ \frac{95 CP}{80} - CP}{CP} × 100%$

$= \dfrac{ \frac{95 CP - 80 CP}{80}}{CP} × 100%$

$= \dfrac{15CP}{80} × \dfrac{1}{CP} × 100%$

$= \dfrac{15}{80} × 100%$

$= 18.75%$

Hence, the required profit percentage in the given transaction is 18.75%.

#SciPiPupil