Exercise 17.1
General Section
1 a) If $\sum fx$ = 450 and N = 15, find $\overline{X}$.
Solution:
We know,
$\overline{X} = \dfrac{ \sumfx}{N}$
$= \dfrac{450}{15}$
$= 30$
2 a) If $\overline{X}$ = 35 and $\sum fx$ = 455, find the number of terms (N).
Solution,
We know,
$N = \dfrac{ \sum fx}{\overline{X}}$
$= \dfrac{455}{35}$
$= 13$
3 a) If $\overline{X}$= 25, N = 10 $\sum fx$ = p, find the value of p.
Solution:
We know,
$\sum fx = \overline{X} × N$
$or, p = 25 × 10$
$\therefore p = 250$
4 a) In a series, if $\sum fm$=150 + 5a, $\overline{X}$=10 and $\sum f$= 10 + a, find the value of a.
Solution:
We know,
$\overline{X} = \dfrac{ \sum fx}{ \sum f}$
$or, 10 = \dfrac{150 + 5a}{10 + a}$
$or, 10(10+a) = 150 + 5a$
$or, 100 + 10a = 150 + 5a$
$or, 10a - 5a = 150 - 100$
$or, 5a = 50$
$or, a = \dfrac{50}{5}$
$\therefore a = 10$
4 c) If mean (\overline{X}) = 12, $\sum$fm = 70 + 10a and the number of frequency (N) = 5 + a, find the value of a.
Solution:
We know,
$\overline{X} = \dfrac{ \sum fm}{N}$
$or, 12 = \dfrac{70 + 10a}{5+a}$
$or, 12(5+a) = 70 + 10a$
$or, 60 + 12a = 70 + 10a$
$or, 12a - 10a = 70 - 60$
$or, 2a = 10$
$\therefore a = 5$
4 e) If $\overline{X}$ = 15, $\sum$fm = 350 + 13p and number of terms (N) = 32, find the value of p.
Solution:
We know,
$\overline{X} = \dfrac{ \sum fm}{N}$
$or, 15 = \dfrac{350 + 13p}{32}$
$or, 14 × 32 = 350 + 13p$
$or, 350 + 13p = 480$
$or, 13p = 480 - 350$
$or, 13p = 130$
$\therefore p = 10$
Creative Section
5) Find the arithmetic mean (or average) from the data given in the following tables.
a)
Solution:
X | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
f | 5 | 7 | 8 | 6 | 4 |
Solution:
Arranging given data in a table,
X | mid-value (m) | f | fm |
---|---|---|---|
0-10 10-20 20-30 30-40 40-50 |
5 15 25 35 45 |
5 7 8 6 4 |
25 105 200 210 180 |
Total |
|
N = 30 | $\sum$fm= 720 |
Now,
Arithmetic mean ($\overline{x}$) = $\dfrac{\sum fm}{N}$
$= \dfrac{720}{30}$
$= 24$
c)
Solution:
Wages (Rs) | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
No. of workers | 6 | 8 | 12 | 8 | 6 |
Solution:
X | mid-value (m) | f | fm |
---|---|---|---|
50-60 60-70 70-80 80-90 90-100 |
55 65 75 85 95 |
6 8 12 8 6 |
330 520 900 680 570 |
Total | N=40 | $\sum$fm=3000 |
Now,
Arithmetic mean ($\overline{x}$) = $\dfrac{\sum fm}{N}$
$= \dfrac{3000}{40}$
$= 75$
e)
Solution
Marks | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
No. of students | 4 | 5 | 2 | 4 | 3 | 2 |
Solution
X | mid-value (m) | f | fm |
---|---|---|---|
20-30 30-40 40-50 50-60 60-70 70-80 |
25 35 45 55 65 75 |
4 5 2 4 3 2 |
100 175 90 220 195 150 |
Total | N=20 | $\sum$fm=930 |
Now,
Arithmetic mean ($\overline{x}$) = $\dfrac{ \sum fm}{N}$
$= \dfrac{930}{20}$
$= 46.5$
About vedanta EXCEL in MATHEMATICS Book 10
Author: Hukum Pd. Dahal
Editor: Tara Bahadur Magar
Vanasthali, Kathmandu, Nepal
+977-10-4382404, 01-4362082
vedantapublication@gmail.com
About this page:
Exercise 17.1 | Statistics - Mean | vedanta Excel in Mathematics | Class
10 is a collection of the solutions related to exercises of mean of
grouped and continuous data from Statistics Chapter for Nepal's Secondary
Education Examination (SEE) appearing students.
#SciPiPupil
1 Comments
after 5 no
ReplyDeleteYou can let us know your questions in the comments section as well.