Exercise 17.1

General Section

1 a) If $\sum fx$ = 450 and N = 15, find $\overline{X}$.

Solution:
We know,

$\overline{X} = \dfrac{ \sumfx}{N}$

$= \dfrac{450}{15}$

$= 30$




2 a) If $\overline{X}$ = 35 and $\sum fx$ = 455, find the number of terms (N).

Solution,
We know,

$N = \dfrac{ \sum fx}{\overline{X}}$

$= \dfrac{455}{35}$

$= 13$




3 a) If $\overline{X}$= 25, N = 10 $\sum fx$ = p, find the value of p.

Solution:
We know,

$\sum fx = \overline{X} × N$

$or, p = 25 × 10$

$\therefore p = 250$




4 a) In a series, if $\sum fm$=150 + 5a, $\overline{X}$=10 and $\sum f$= 10 + a, find the value of a.

Solution:
We know,

$\overline{X} = \dfrac{ \sum fx}{ \sum f}$

$or, 10 = \dfrac{150 + 5a}{10 + a}$

$or, 10(10+a) = 150 + 5a$

$or, 100 + 10a = 150 + 5a$

$or, 10a - 5a = 150 - 100$

$or, 5a = 50$

$or, a = \dfrac{50}{5}$

$\therefore a = 10$




4 c) If mean (\overline{X}) = 12, $\sum$fm = 70 + 10a and the number of frequency (N) = 5 + a, find the value of a.

Solution:
We know,

$\overline{X} = \dfrac{ \sum fm}{N}$

$or, 12 = \dfrac{70 + 10a}{5+a}$

$or, 12(5+a) = 70 + 10a$

$or, 60 + 12a = 70 + 10a$

$or, 12a - 10a = 70 - 60$

$or, 2a = 10$

$\therefore a = 5$




4 e) If $\overline{X}$ = 15, $\sum$fm = 350 + 13p and number of terms (N) = 32, find the value of p.

Solution:
We know,

$\overline{X} = \dfrac{ \sum fm}{N}$

$or, 15 = \dfrac{350 + 13p}{32}$

$or, 14 × 32 = 350 + 13p$

$or, 350 + 13p = 480$

$or, 13p = 480 - 350$

$or, 13p = 130$

$\therefore p = 10$



Creative Section

5) Find the arithmetic mean (or average) from the data given in the following tables.

a) 
X 0-10 10-20 20-30 30-40 40-50
f 5 7 8 6 4

Solution:
Arranging given data in a table,
X mid-value (m) f fm
0-10
10-20
20-30
30-40
40-50
5
15
25
35
45
5
7
8
6
4
25
105
200
210
180
Total
N = 30 $\sum$fm= 720

Now,
Arithmetic mean ($\overline{x}$) = $\dfrac{\sum fm}{N}$

$= \dfrac{720}{30}$

$= 24$



c)
Wages (Rs) 50-60 60-70 70-80 80-90 90-100
No. of workers 6 8 12 8 6

Solution:
X mid-value (m) f fm
50-60
60-70
70-80
80-90
90-100
55
65
75
85
95
6
8
12
8
6
330
520
900
680
570
Total N=40 $\sum$fm=3000

Now,
Arithmetic mean ($\overline{x}$) = $\dfrac{\sum fm}{N}$

$= \dfrac{3000}{40}$

$= 75$


e)
Marks 20-30 30-40 40-50 50-60 60-70 70-80
No. of students 4 5 2 4 3 2

Solution
X mid-value (m) f fm
20-30
30-40
40-50
50-60
60-70
70-80
25
35
45
55
65
75
4
5
2
4
3
2
100
175
90
220
195
150
Total N=20 $\sum$fm=930

Now,
Arithmetic mean ($\overline{x}$) = $\dfrac{ \sum fm}{N}$

$= \dfrac{930}{20}$

$= 46.5$



About vedanta EXCEL in MATHEMATICS Book 10

Author: Hukum Pd. Dahal
Editor: Tara Bahadur Magar

Vanasthali, Kathmandu, Nepal
+977-10-4382404, 01-4362082
vedantapublication@gmail.com


About this page:


Exercise 17.1 | Statistics - Mean | vedanta Excel in Mathematics | Class 10 is a collection of the solutions related to exercises of mean of grouped and continuous data from Statistics Chapter for Nepal's Secondary Education Examination (SEE) appearing students.

#SciPiPupil