Exercise 17.1
General Section
1 a) If \sum fx = 450 and N = 15, find \overline{X}.
Solution:
We know,
\overline{X} = \dfrac{ \sumfx}{N}
= \dfrac{450}{15}
= 30
2 a) If \overline{X} = 35 and \sum fx = 455, find the number of terms (N).
Solution,
We know,
N = \dfrac{ \sum fx}{\overline{X}}
= \dfrac{455}{35}
= 13
3 a) If \overline{X}= 25, N = 10 \sum fx = p, find the value of p.
Solution:
We know,
\sum fx = \overline{X} × N
or, p = 25 × 10
\therefore p = 250
4 a) In a series, if \sum fm=150 + 5a, \overline{X}=10 and \sum f= 10 + a, find the value of a.
Solution:
We know,
\overline{X} = \dfrac{ \sum fx}{ \sum f}
or, 10 = \dfrac{150 + 5a}{10 + a}
or, 10(10+a) = 150 + 5a
or, 100 + 10a = 150 + 5a
or, 10a - 5a = 150 - 100
or, 5a = 50
or, a = \dfrac{50}{5}
\therefore a = 10
4 c) If mean (\overline{X}) = 12, \sumfm = 70 + 10a and the number of frequency (N) = 5 + a, find the value of a.
Solution:
We know,
\overline{X} = \dfrac{ \sum fm}{N}
or, 12 = \dfrac{70 + 10a}{5+a}
or, 12(5+a) = 70 + 10a
or, 60 + 12a = 70 + 10a
or, 12a - 10a = 70 - 60
or, 2a = 10
\therefore a = 5
4 e) If \overline{X} = 15, \sumfm = 350 + 13p and number of terms (N) = 32, find the value of p.
Solution:
We know,
\overline{X} = \dfrac{ \sum fm}{N}
or, 15 = \dfrac{350 + 13p}{32}
or, 14 × 32 = 350 + 13p
or, 350 + 13p = 480
or, 13p = 480 - 350
or, 13p = 130
\therefore p = 10
Creative Section
5) Find the arithmetic mean (or average) from the data given in the following tables.
a)
Solution:
X | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
f | 5 | 7 | 8 | 6 | 4 |
Solution:
Arranging given data in a table,
X | mid-value (m) | f | fm |
---|---|---|---|
0-10 10-20 20-30 30-40 40-50 |
5 15 25 35 45 |
5 7 8 6 4 |
25 105 200 210 180 |
Total |
|
N = 30 | \sumfm= 720 |
Now,
Arithmetic mean (\overline{x}) = \dfrac{\sum fm}{N}
= \dfrac{720}{30}
= 24
c)
Solution:
Wages (Rs) | 50-60 | 60-70 | 70-80 | 80-90 | 90-100 |
No. of workers | 6 | 8 | 12 | 8 | 6 |
Solution:
X | mid-value (m) | f | fm |
---|---|---|---|
50-60 60-70 70-80 80-90 90-100 |
55 65 75 85 95 |
6 8 12 8 6 |
330 520 900 680 570 |
Total | N=40 | \sumfm=3000 |
Now,
Arithmetic mean (\overline{x}) = \dfrac{\sum fm}{N}
= \dfrac{3000}{40}
= 75
e)
Solution
Marks | 20-30 | 30-40 | 40-50 | 50-60 | 60-70 | 70-80 |
No. of students | 4 | 5 | 2 | 4 | 3 | 2 |
Solution
X | mid-value (m) | f | fm |
---|---|---|---|
20-30 30-40 40-50 50-60 60-70 70-80 |
25 35 45 55 65 75 |
4 5 2 4 3 2 |
100 175 90 220 195 150 |
Total | N=20 | \sumfm=930 |
Now,
Arithmetic mean (\overline{x}) = \dfrac{ \sum fm}{N}
= \dfrac{930}{20}
= 46.5
About vedanta EXCEL in MATHEMATICS Book 10
Author: Hukum Pd. Dahal
Editor: Tara Bahadur Magar
Vanasthali, Kathmandu, Nepal
+977-10-4382404, 01-4362082
vedantapublication@gmail.com
About this page:
Exercise 17.1 | Statistics - Mean | vedanta Excel in Mathematics | Class
10 is a collection of the solutions related to exercises of mean of
grouped and continuous data from Statistics Chapter for Nepal's Secondary
Education Examination (SEE) appearing students.
#SciPiPupil
1 Comments
after 5 no
ReplyDeleteYou can let us know your questions in the comments section as well.