Question: If \pi = 180°, find the value of tan \frac{\pi}{3}.sin\frac{\pi}{6} + sin\frac{\pi}{4}.cos\frac{\pi}{2} + cos\frac{\pi}{2}.sin\frac{\pi}{3}.
Answer: \dfrac{\sqrt{3}}{2}
Solution:
Given,
\pi = 180°
Now,
= tan \frac{\pi}{3}.sin\frac{\pi}{6} + sin\frac{\pi}{4}.cos\frac{\pi}{2} +
cos\frac{\pi}{2}.sin\frac{\pi}{3}
= tan \frac{180°}{3}.sin\frac{180°}{6} +
sin\frac{180°}{4}.cos\frac{180°}{2} +
cos\frac{180°}{2}.sin\frac{180°}{3}
= tan60°.sin30° + sin45°.cos90° + cos90°.sin60°
= \sqrt{3} × \dfrac{1}{2} + \dfrac{1}{\sqrt{2}}×0 + 0 ×
\dfrac{\sqrt{3}}{2}
= \dfrac{\sqrt{3}}{2} + 0 + 0
= \dfrac{\sqrt{3}}{2}
#Trigonometry
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.