Question: If \pi = 180°, find the value of tan \frac{\pi}{3}.sin\frac{\pi}{6} + sin\frac{\pi}{4}.cos\frac{\pi}{2} + cos\frac{\pi}{2}.sin\frac{\pi}{3}.


Answer: \dfrac{\sqrt{3}}{2}

Solution:
Given,
\pi = 180°

Now,
= tan \frac{\pi}{3}.sin\frac{\pi}{6} + sin\frac{\pi}{4}.cos\frac{\pi}{2} + cos\frac{\pi}{2}.sin\frac{\pi}{3}

= tan \frac{180°}{3}.sin\frac{180°}{6} + sin\frac{180°}{4}.cos\frac{180°}{2} + cos\frac{180°}{2}.sin\frac{180°}{3}

= tan60°.sin30° + sin45°.cos90° + cos90°.sin60°

= \sqrt{3} × \dfrac{1}{2} + \dfrac{1}{\sqrt{2}}×0 + 0 × \dfrac{\sqrt{3}}{2}

= \dfrac{\sqrt{3}}{2} + 0 + 0

= \dfrac{\sqrt{3}}{2}

#Trigonometry
#SciPiPupil