Question: If $3 + tan \theta = sec^2 \theta$, find the value of $tan \theta$.
Answer: 2, -1
Solution:
We know,
$sec^2 \theta = 1 + tan^2 \theta$
Given,
$3 + tan \theta = sec^2 \theta$
$or, 3 + tan \theta = 1 + tan^2 \theta$
$or, 3 - 1 = tan^2 \theta - tan \theta $
$or, 2 = tan^2 \theta - tan \theta$
$or, tan^2 \theta - tan\theta - 2 = 0$
Comparing above equation with $ax^2 + bx + c = 0$, we get,
$a = 1,\ b = -1, \ c= - 2, \ x = tan \theta$
Using formula of quadratic equation,
$x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$or, tan \theta = \dfrac{-(-1) \pm \sqrt{(-1)^2 - 4(1)(-2)}}{2(1)}$
$or, tan \theta = \dfrac{1 \pm \sqrt{1 + 8}}{2}$
$or, tan\theta = \dfrac{1 \pm \sqrt{9}}{2}$
$or, tan \theta = \dfrac{1 \pm 3}{2}$
Taking positive sign,
$tan \theta = \dfrac{1 + 3}{2}$
$\therefore tan \theta = 2$
Taking negative sign,
$tan \theta = \dfrac{1 - 3}{2}$
$\therefore tan \theta = -1$
Hence, the required value of $tan\theta$ are 2 or -1.
#Trigonometry
#Values
0 Comments
You can let us know your questions in the comments section as well.