Given,
$n(U) = 125$
$n(A) = 50$
$n(B) = 48$
$n(C) = 42$
$n(A \cap B) = 12$
$n(B \cap C) = 8$
$n(A \cap C) = 9$
$n(A \cap B \cap C) = 5$
To find:
$n(A \cup B \cup C) = ?$
$n(\overline{ A\cup B \cup C}) = ?$
Using formula,
$n(A \cup B \cup C) = n(A) + n(B) + n(C) - \{ n(A \cap B) + n(B \cap C) +
n(A \cap C)\} + n(A \cup B \cup C)$
$= 50 + 48 + 42 - \{ 12 + 8 + 9 \} + 5$
$= 116$
Also,
$n( \overline {A \cup B \cup C}) = n(U) - n(A \cup B \cup C)$
$= 125 - 116$
$= 9$
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.