Solution:

Given,
$n(U) = 125$
$n(A) = 50$
$n(B) = 48$
$n(C) = 42$
$n(A \cap B) = 12$
$n(B \cap C) = 8$
$n(A \cap C) = 9$
$n(A \cap B \cap C) = 5$

To find:
$n(A \cup B \cup C) = ?$
$n(\overline{ A\cup B \cup C}) = ?$

Using formula,
$n(A \cup B \cup C) = n(A) + n(B) + n(C) - \{ n(A \cap B) + n(B \cap C) + n(A \cap C)\} + n(A \cup B \cup C)$

$= 50 + 48 + 42 - \{ 12 + 8 + 9 \} + 5$

$= 116$


Also,
$n( \overline {A \cup B \cup C}) = n(U) - n(A \cup B \cup C)$

$= 125 - 116$

$= 9$


#SciPiPupil