If tanA = \dfrac{x}{y}, find the value of \dfrac{xsinA - ycosA}{xsinA + ycosA}


Solution:
Given,

tan A = \dfrac{x}{y}
To find: \dfrac{xsinA - ycosA}{xsinA + ycosA} = ?

Now,

= \dfrac{xsinA - ycosA}{xsinA + ycosA}

[Dividing by cosA]

= \dfrac{ \frac{xsinA}{cosA} - \frac{ycosA}{cosA}}{\frac{xsinA}{cosA} + \frac{ycosA}{cosA}}

= \dfrac{x tanA - y }{x tanA + y}

[Put value of tanA]

= \dfrac{x (\frac{x}{y})- y}{x (\frac{x}{y} + y}

= \dfrac{\dfrac{x^2 - xy}{y}}{\dfrac{x^2 + xy}{y}}

= \dfrac{x^2 - y^2}{x^2 + y^2}

Hence,
The required value of \dfrac{xsinA - ycosA}{xsinA + ycosA} is \dfrac{x^2 - y^2}{x^2 + y^2}.

#Trigonometry