Solution:
Given: $\theta = 60°$
To prove: $cos3\theta = 4cos^3 \theta - 3cos\theta$
We know,
$cos 60° = \dfrac{1}{2}$
$cos(90° + \theta) = - sin \theta$
$sin 90° = 1$
Taking LHS
$= cos 3\theta$
$= cos(3\theta)$
$= cos(3×60°)$
$= cos(180°)$
$= cos(90°+90°)$
$= - sin90°$
$= - 1$ [or you can use calculator]
Taking RHS
$= 4cos^3 \theta - 3cos\theta$
$= 4(cos \theta)^3 - 3cos\theta$
$= 4(cos 60°)^3 - 3cos60°$
$= 4 \left ( \dfrac{1}{2} \right )^3 - 3× \dfrac{1}{2}$
$= 4× \dfrac{1}{8} - \dfrac{3}{2}$
$= \dfrac{1}{2} - \dfrac{3}{2}$
$= \dfrac{1 -3}{2}$
$= \dfrac{-2}{2}$
$= -1$
Since, LHS = RHS
$cos3\theta = 4cos^3 \theta - 3cos\theta$ #proved
#SciPiPupil
#Trigonometry
0 Comments
You can let us know your questions in the comments section as well.