Question: If $\theta = 60°$, verify that: $cos3\theta = 4cos^3 \theta - 3cos\theta$.

Solution:

Given: $\theta = 60°$
To prove$cos3\theta = 4cos^3 \theta - 3cos\theta$

We know,
$cos 60° = \dfrac{1}{2}$
$cos(90° + \theta) = - sin \theta$
$sin 90° = 1$

Taking LHS
$= cos 3\theta$
$= cos(3\theta)$
$= cos(3×60°)$
$= cos(180°)$
$= cos(90°+90°)$
$= - sin90°$
$= - 1$ [or you can use calculator]

Taking RHS
$= 4cos^3 \theta - 3cos\theta$
$= 4(cos \theta)^3 - 3cos\theta$
$= 4(cos 60°)^3 - 3cos60°$
$= 4 \left ( \dfrac{1}{2} \right )^3 - 3× \dfrac{1}{2}$
$= 4× \dfrac{1}{8} - \dfrac{3}{2}$
$= \dfrac{1}{2} - \dfrac{3}{2}$
$= \dfrac{1 -3}{2}$
$= \dfrac{-2}{2}$
$= -1$

Since, LHS = RHS
$cos3\theta = 4cos^3 \theta - 3cos\theta$ #proved

#SciPiPupil
#Trigonometry