1. How many of them preferred all of these activities?
  2. Show the above information in a Venn-diagram.

Solution:

Let U be the set of total tourists who were surveyed.

Let T, R, and F represent the sets of people who preferred Trekking, Rafting, and Forest Safari, respectively.


Given,
$n(U) = 900$
$n(T) = 450$
$n(R) = 300$
$n(F) = 400$
$n(T \cup R \cup F)^c = 100$
$n(T \cap R) = 200$
$n(T \cap F) = 110$
$n(R \cap F) = 100$

To find:$ n(T \cap \R \cap F) = ?$


Using formula,

$n(T \cup R \cup F) = n(U) - n(T \cup R \cup F)^c$

$= 900 - 100$

$= 800$


Now,
$n(T \cup R \cup F) = n(T) + n(R) + n(F) - n(T \cap R) - n(T \cap F) - n(R \cap F) + n(T \cap R \cap F)$

$or, 800 = 450 + 300 + 400 - 200 - 110 - 100 + n(T \cap R \cap F)$

$or, 800 = 1150 - 410 + n(T \cap R \cap F)$

$or, 800 = 740 + n(T \cap R \cap F)$

$or, n(T \cap R \cap F) = 800 - 740$

$\therefore n(T \cap R \cap F) = 60$

Hence, 60 tourists preferred all of these activities.

#SciPiPupil