Question: Prove: $\dfrac{1 + sin \theta}{cos \theta} = \dfrac{1}{sec \theta - tan \theta}$.
Solution:
Taking RHS
$= \dfrac{1}{sec \theta - tan \theta}$
$= \dfrac{1}{\frac{1}{cos \theta} - \frac{sin \theta}{cos \theta}}$
$= \dfrac{1}{\dfrac{1 - sin \theta}{cos \theta}}$
$= 1 × \dfrac{cos \theta}{1 - sin \theta}$
$= \dfrac{cos \theta}{1 - sin \theta}$
$= \dfrac{cos \theta}{1 - sin \theta} × \dfrac{1 + sin \theta}{1 + sin \theta}$
$= \dfrac{cos \theta (1 + sin \theta)}{1 - sin^2 \theta}$
$= \dfrac{cos \theta ( 1 + sin \theta)}{cos^2 \thet}$
$= \dfrac{1 + sin \theta}{cos \theta}$
= LHS
#proved
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.