Question: Prove: \dfrac{1 + sin \theta}{cos \theta} = \dfrac{1}{sec \theta - tan \theta}.


Solution:

Taking RHS

= \dfrac{1}{sec \theta - tan \theta}

= \dfrac{1}{\frac{1}{cos \theta} - \frac{sin \theta}{cos \theta}}

= \dfrac{1}{\dfrac{1 - sin \theta}{cos \theta}}

= 1 × \dfrac{cos \theta}{1 - sin \theta}

= \dfrac{cos \theta}{1 - sin \theta}

= \dfrac{cos \theta}{1 - sin \theta} × \dfrac{1 + sin \theta}{1 + sin \theta}

= \dfrac{cos \theta (1 + sin \theta)}{1 - sin^2 \theta}

= \dfrac{cos \theta ( 1 + sin \theta)}{cos^2 \thet}

= \dfrac{1 + sin \theta}{cos \theta}

= LHS
#proved



#SciPiPupil