Question: Prove: $\dfrac{1}{1 - sinx} - \dfrac{1}{1 + sinx} = 2sinx.sec^2x$.
Solution:
Taking LHS
$= \dfrac{1}{1 - sinx} - \dfrac{1}{1 + sinx}$
$= \dfrac{(1 + sinx) - (1 - sinx)}{(1-sinx)(1+ sinx)}$
$= \dfrac{1 + sinx -1 + sinx}{1 - sin^2x}$
[Using (1 - sin²x = cos²x)]
$= \dfrac{2sinx}{cos^2 x}$
$= 2sinx × \dfrac{1}{cos^2x}$
[Using 1/cosx = secx]
$= 2sinx.sec^2x$
= RHS
#proved
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.