Question: Prove: \dfrac{1}{1 - sinx} - \dfrac{1}{1 + sinx} = 2sinx.sec^2x.


Solution:

Taking LHS

= \dfrac{1}{1 - sinx} - \dfrac{1}{1 + sinx}

= \dfrac{(1 + sinx) - (1 - sinx)}{(1-sinx)(1+ sinx)}

= \dfrac{1 + sinx -1 + sinx}{1 - sin^2x}

[Using (1 - sin²x = cos²x)]

= \dfrac{2sinx}{cos^2 x}

= 2sinx × \dfrac{1}{cos^2x}

[Using 1/cosx = secx]

= 2sinx.sec^2x

= RHS
#proved


#SciPiPupil