Question: Prove: \dfrac{1}{1 - sinx} - \dfrac{1}{1 + sinx} = 2sinx.sec^2x.
Solution:
Taking LHS
= \dfrac{1}{1 - sinx} - \dfrac{1}{1 + sinx}
= \dfrac{(1 + sinx) - (1 - sinx)}{(1-sinx)(1+ sinx)}
= \dfrac{1 + sinx -1 + sinx}{1 - sin^2x}
[Using (1 - sin²x = cos²x)]
= \dfrac{2sinx}{cos^2 x}
= 2sinx × \dfrac{1}{cos^2x}
[Using 1/cosx = secx]
= 2sinx.sec^2x
= RHS
#proved
#SciPiPupil
0 Comments
You can let us know your questions in the comments section as well.