Question: Prove that: cos A = \dfrac{1 - tan^2 \frac{A}{2}}{1 + tan^2 \frac{A}{2}}

Solution:

To prove: cos A = \dfrac{1 - tan^2 \frac{A}{2}}{1 + tan^2 \frac{A}{2}}

Taking LHS,

= cos A

= \dfrac{cos A}{1}

= \dfrac{cos^2 \frac{A}{2} - sin^2 \frac{A}{2}}{cos^2 \frac{A}{2} + sin^2 \frac{A}{2}}

[Dividing numerator and denominator by cos²A]

= \dfrac{\dfrac{cos^2 \frac{A}{2} - sin^2 \frac{A}{2}}{cos^2A}}{\dfrac{cos^2 \frac{A}{2} + sin^2 \frac{A}{2}}{cos^2A}}

= \dfrac{\dfrac{cos^2 \frac{A}{2}}{cos^2 \frac{A}{2}} - \dfrac{cos^2 \frac{A}{2}}{sin^2 \frac{A}{2}}}{\dfrac{cos^2 \frac{A}{2}}{cos^2 \frac{A}{2}} + \dfrac{cos^2 \frac{A}{2}}{sin^2 \frac{A}{2}}}

= \dfrac{1 - tan^2 \frac{A}{2}}{1 + tan^2 \frac{A}{2}}

= RHS proved.

Some SUB Multiple Angles Formulae
sin A = 2 sin\frac{A}{2}cos\frac{A}{2}
cos A = cos^2 \frac{A}{2} - sin^2 \frac{A}{2}
tan A = \dfrac{2 tan \frac{A}{2} }{1 - tan^2 \frac{A}{2}}
cot A = \dfrac{cot^2 \frac{A}{2} -1}{2 cot \frac{A}{2}}
sin A = 3 sin \frac{A}{3} - 4sin^3 \frac{A}{3}
cos A = 4cos^3 \frac{A}{3} - 3 cos \frac{A}{3}
tan A = \dfrac{3tan \frac{A}{3} - tan^3 \frac{A}{3}}{ 1 - 3tan^2 \frac{A}{3}}
cot A = \dfrac{3cot \frac{A}{3} - cot^3 \frac{A}{3}}{ 1 - 3cot^2 \frac{A}{3}}

#SciPiPupil