Answer: Rs 12,000

Solution:

According to the question,

Time (T) = 2 years
Rate of interest (R%) = 8% per annum
Difference between compound interest and simple interest (CI - SI) = Rs 76.80

Let the principal sum be represented by Rs P.


We have,
CI = P \left [  \left ( 1 + \dfrac{R}{100} \right )^T - 1 \right ]

= P \left [ \left ( 1 + \dfrac{8}{100} \right )^2 - 1 \right ]

= P \left [ \left ( \dfrac{108}{100} \right )^2 - 1]

= P \left [ \left ( \dfrac{27}{25} \right )^2 - 1 \right ]

= P \left [ \dfrac{729}{625} - 1 \right ]

= P × \dfrac{729 - 625}{625}

= P × \dfrac{104}{625}

or, CI = \dfrac{104 P }{625}


And,
SI = \dfrac{P × T × R}{100}

= \dfrac{P × 2 × 8}{100}

or, SI = \dfrac{4P}{25}


We know,
CI - SI = 76.80

or, \dfrac{104P}{625} - \dfrac{4P}{25} = 76.80

or, \dfrac{104P - 4×25 P}{625} = 76.80

or, \dfrac{104 P - 100 P}{625} = 76.80

or, 4P = 76.80 × 625

or, 4P = 48000

or, 4 × P = 4 × 12000

\therefore P = Rs 12,000

Hence, the required principal amount is Rs 12,000.