Question:Prove that: \dfrac{1 + cos \alpha}{1 - cos \alpha} = cot^2 \frac{ \alpha}{2}
Solution:
Taking LHS
= \dfrac{1 + cos \alpha}{1 - cos \alpha}
Using sub-multiple formula of cosA and trigonometric identity of 1.
= \dfrac{(sin^2 \frac{\alpha}{2} + cos^2 \frac{\alpha}{2}) + (cos^2 \frac{\alpha}{2} - sin^2 \frac{\alpha}{2})}{(sin^2 \frac{\alpha}{2} + cos^2 \frac{\alpha}{2}) - (cos^2 \frac{\alpha}{2} - sin^2 \frac{\alpha}{2})
= \dfrac{2cos^2 \frac{\alpha}{2}}{2 sin^2 \frac{\alpha}{2}}
= cot^2 \frac{\alpha}{2}
RHS
#proved
0 Comments
You can let us know your questions in the comments section as well.