Question: Prove that: \dfrac{1 + cos \alpha}{sin \alpha} = cot \frac{\alpha}{2}
Solution:
Taking LHS
= \dfrac{1 + cos \alpha}{sin \alpha}
$= \dfrac{(sin^2 \frac{\alpha}{2} + cos^2\frac{\alpha}{2}) + (cos^2 \frac{\alpha}{2} - sin^2 \frac{\alpha}{2})}{sin \alpha}$
= \dfrac{2cos^2 \frac{\alpha}{2}}{2 sin \frac{alpha}{2} cos \frac{\alpha}{2}}
= \dfrac{cos \frac{\alpha}{2}}{sin \frac{\alpha}{2}}
= cot \frac{alpha}{2}
RHS
#proved
0 Comments
You can let us know your questions in the comments section as well.