Prove that: \dfrac{1 + cos2A}{sin2A} = cotA.

Solution:

LHS

= \dfrac{1 + cos2A}{sin2A}

Use Trigonometry Identity of 1 and multiple angle formula of cos2A, we get,

= \dfrac{(sin²A+cos²A)+(cos²A - sin²A)}{sin2A}

= \dfrac{sin²A + cos²A + cos²A - sin²A}{sin2A}

= \dfrac{2cos²A}{sin2A}

= \dfrac{2cos²A}{2sinAcosA}

= \dfrac{2×cosA×cosA}{2×sinA×cosA}

= \dfrac{cosA}{sinA}

= cotA

RHS

See more solutions of Trigonometry: