Prove that: $\dfrac{1 + cos2A}{sin2A} = cotA$.
Solution:
LHS
$= \dfrac{1 + cos2A}{sin2A}$
Use Trigonometry Identity of 1 and multiple angle formula of cos2A, we get,
$= \dfrac{(sin²A+cos²A)+(cos²A - sin²A)}{sin2A}$
$= \dfrac{sin²A + cos²A + cos²A - sin²A}{sin2A}$
$= \dfrac{2cos²A}{sin2A}$
$= \dfrac{2cos²A}{2sinAcosA}$
$= \dfrac{2×cosA×cosA}{2×sinA×cosA}$
$= \dfrac{cosA}{sinA}$
$= cotA$
RHS
See more solutions of Trigonometry:
0 Comments
You can let us know your questions in the comments section as well.