1 - Determinant (Matrix)
In this post, you can check the solutions to the exercises of
Determinant of 2x2 square matrices of Matrix chapter of Readmore
Optional Mathematics by DR Simkhada. It consists of complete answers
to all odd questions mentioned in the textbook.
Before starting, make sure to check the following note of
Determinant.
1. Find the value of the following:
a) $\left | \displaylines{cosA & -sinA \\ sinA
& cosA} \right|$
Solution:
| A | = cosA × cos A - (- sinA) × sinA
= cos²A + sin²A
= 1
c) $\left | \displaylines{cosecA & -cotA \\ cotA & cosecA} \right
|$
Solution:
Determinant = cosecA × cosecA - cotA × cotA
= cosec²A - cot²A
= 1
2. Evaluate the determinant of the following matrices.
a) $\left ( \displaylines{4 &3 \\ 1 &2} \right )$
Solution:
Determinant = (4 × 2) - (3 × 1)
= 8 - 3
= 5
c) $\left ( \displaylines{-1 & -3 \\ -4 & - 20} \right )$
Solution:
Determinant = (-1)×(-20) - (-3)×(-4)
= 20 - 12
= 8
e) $\left( \displaylines{-1 &-18 \\ 18&44} \right )$
Solution:
Determinant = (-1) × 44 - (-18)×18
= -44 + 324
= 280
g) $\left ( \displaylines{3 & -2 \\ 2&8} \right )$
Solution:
Determinant = (3×8) - (-2)×2
= 24 + 4
= 28
3. Find the value of x, when:
a) $\left | \displaylines{-3 &x \\ 5&2 }\right | = 9$
Solution:
Determinant = (-3)×(2) - (x)×(5)
or, 9 = -6 - 5x
or, 5x = - 6 - 9
or, 5x = -15
So, x = - 3
c) $\left | \displaylines{x &2 \\8 &x } \right | = 0$
Solution:
Determinant = (x)(x) - (2)(8)
or, 0 = x² - 16
or, x² = 16
So, x = ±4
4. If A = $\left ( \displaylines{2 &3\\ 0&4} \right)$, find the value of:
a) |3A + 5I|
Solution:
3A = 3$\left ( \displaylines{2&3\\0&4} \right )$
$= \left ( \displaylines{ 6 &9\\ 0 & 12}\right )$
We know,
I = $\left ( \displaylines{ 1&0\\0&1} \right )$
So,
5I = $\left ( \displaylines{5 &0\\0&5} \right )$
Now,
3A + 5I = $\left( \displaylines{6 &9\\0 &12}\right ) + \left(
\displaylines{5&0\\0&5} \right )$
$= \left ( \displaylines{ 6+5 & 9+0\\ 0+0&12+5}\right )$
$= \left ( \displaylines{ 11 & 9\\ 0 & 17} \right)$
And,
$\left | \displaylines{11 &9\\0&17}\right|$
$= 11(17) - 9(0)$
$= 187 - 0$
$= 187$
5 a) If A = $\left ( \displaylines{3&4\\2&5} \right )$ and B =
$\left ( \displaylines{2 & 1\\1 & 3} \right )$, find the determinant
of 3A - 4B.
Solution:
3A - 4B = $ 3 \left ( \displaylines{3&4\\2&5} \right ) - 4 \left (
\displaylines{2&1\\1&3} \right)$
$= \left ( \displaylines{9&12\\6&15} \right ) - \left (
\displaylines{8 & 4\\4&12}\right )$
$= \left ( \displaylines{9 - 8 & 12-4\\ 6-4&15-12} \right )$
$= \left ( \displaylines{1 & 8\\2 & 3} \right )$
Now,
$\left | \displaylines{1 &8\\2 & 3}\right |$
$= (1)3 - 8(2)$
$= 3 - 16$
$= -13$
6 a) If P = $\left ( \displaylines{-4&5\\7&8} \right )$, Q = $\left ( \displaylines{4&6\\x&3} \right )$ and the determinant of P - Q - 5I is 14 where I is a 2x2 identity matrix, find the value of x.
Solution:
We know,
5I = $\left ( \displaylines{5 &0\\0&5} \right )$
And,
P - Q - 5I = $\left ( \displaylines{-4&5\\7&8}\right ) - \left (
\displaylines{4&6 \\x&3} \right) - \left (
\displaylines{5&0\\0&5} \right )$
$= \left ( \displaylines{-4 -4 -5 & 5-6-0\\7-x-0 & 8-3-5} \right
)$
$= \left ( \displaylines{-13 & -1\\7-x & 0} \right )$
Now,
$\left | \displaylines{-13 & -1 \\7-x &0} \right ) = 14$
$or, (-13)(0) - (-1)(7-x) = 14$
$or, 0 +(7-x) = 14$
$or, 7 - x = 14$
$or, 7 - 14 = x$
$\therefore x = -7$
About Readmore Optional Mathematics Book 10
Author: D. R. Simkhada
Editor: I. R. Simkhada
Readmore Publishers and Distributors
T.U. Road, Kuleshwor - 14, Kathmandu, Nepal
Phone: 4672071, 5187211, 5187226
readmorenepal6@gmail.com
About this page:
Determinant of Matrix- Class 10 Solved Exercises | Readmore
Optional Mathematics is a collection of the solutions related to
exercises of Determinant of 2x2 square matrix from the Matrix
chapter for Nepal's Secondary Education Examination (SEE)
appearing students.
#SciPiPupil
2 Comments
Thanks for sharing this useful information ☺️ℹ️☺️☺️
ReplyDeleteYou're welcome!
DeleteYou can let us know your questions in the comments section as well.