3 - Solutions of a System of Linear Equations (Matrix)


In this post, you can check the solutions to the exercises of solution of a system of linear equations of Matrix chapter of Readmore Optional Mathematics by DR Simkhada. It consists of complete answers to all odd questions mentioned in the textbook.

Full answers will be uploaded on reaching 20 unique comments from verified accounts.

Before starting, make sure to check the following note of Determinant.
  1. Solutions of a system of Linear Equations - Matrix Class 10

Important Points:
  1. When the determinant of a matrix formed by a system of linear equations is zero (singular matrix), the equations have no unique solutions.
  2. The general form of matrix is AX = B.
  3. When AX = B, X = A$^{-1}$B.
  4. When XA = B, X = BA$^{-1}$.
  5. Always arrange both the equations in the form of ax + by = c.
  6. If the equation is ax + by - c = 0 then arrange it as ax + by = c to get correct solution.


Let,
Equation i: ax + by = c
Equation ii: gx + fy = z
Matrix form of above equations is:
$\left ( \displaylines{a & b\\g & f}\right) \left ( \displaylines{x \\y}\right ) = \left ( \displaylines{c \\ z} \right )$


1. Check whether the following system of equations contain unique solutions or not.


a) 3x + 2y = 5 and 6x + 4y = 10
Solution:
Arranging in matrix form,
$\left ( \displaylines { 3&6\\2&4}\right ) \left ( \displaylines{x \\y} \right ) = \left ( \displaylines{5 \\10} \right )$
i.e. AX = B

To check whether the system of equations contains unique solution or not, we need to determine whether matrix A is singular or non-singular matrix.

We have,

A = $\left ( \displaylines{ 3&6\\2&4} \right )$

$or, |A| = \left | \displaylines{3&6\\2&4}  \right )$

$= 3(4) - 6(2)$

$= 12 - 12$

$= 0$

Since |A| = 0, the system of solutions does not have unique solutions.


c) 3x - 5y = 7 and 5y - 3x + 2 = 0
Solution:
We need each equation in the form of ax + by = c

So,
Required equations are:
3x - 5y = 7
3x - 5y = 2

Arranging in matrix form, we get,
$\left ( \displaylines{3 & -5\\3&-5} \right ) \left ( \displaylines{x\\y} \right ) \left ( \displaylines{7\\2}\right )$

i.e. AX = B

Now,

|A| = $\left | \displaylines{3&-5\\3&-5}\right |$

$= 3(-5) - (-5)(3)$

$= -15 +15$

$= 0$

Since, matrix A is a singular matrix, given system of equations has no unique solutions.

2. Find $\left ( \displaylines{x\\y}\right )$ when:


a) $\left ( \displaylines{-2&1\\-3&1} \right ) \left ( \displaylines{ x \\y} \right )\left ( \displaylines{11\\1} \right )$

Solution:

$\left ( \displaylines{-2&1\\-3&1} \right ) \left ( \displaylines{x \\y} \right ) \left ( \displaylines{ 11\\1} \right )$

We have,

AX = B

So,
A = $\left ( \displaylines{ -2&1\\-3&1} \right )$

Now,
|A| = $\left | \displaylines{ -2&1\\-3&1} \right |$

$= 2(1) - (-3)1$

$= 2 + 3$

$= 5$

Since |A| ≠ 0, the system of equations have unique solutions.

And,
A$^{-1}$ = $\dfrac{1}{|A|} (adjoint of A)$

$= \dfrac{1}{5} \left ( \displaylines{ 1&-1\\3&2} \right )$

Also,
X = $A^{-1}B$

$or, \left ( \displaylines{ x\\y} \right )= \dfrac{1}{5} \left ( \displaylines{1&-1\\3&2} \right ) \left ( \displaylines{11\\1} \right )$

$= \dfrac{1}{5} \left ( \displaylines{ 1(11) -1(1)\\3(11)+2(1) } \right )$

$= \dfrac{1}{5} \left ( \displaylines{11-1\\33+2} \right )$

$= \dfrac{1}{5} \left ( \displaylines{10\\35} \right )$

$= \left ( \displaylines{ \frac{10}{5} \\ \frac{35}{5} } \right )$

$= \left ( \displaylines{ 2 \\7} \right )$

Hence, x = 2 and y = 7.


c) $\left ( \displaylines{2&5\\3&-5} \right ) \left ( \displaylines{x\\y} \right ) = \left ( \displaylines{2\\3} \right )$

Solution:
Given,
AX = B

So, A = $\left ( \displaylines{2&5\\3&-5} \right )$

|A| = $\left | \displaylines{2&5\\3&-5} \right )$

$= 2(-5) - 3(5)$

$= -10 - 15$

$= -25$

Since |A| ≠ 0, the system of equations has unique solutions.

We know,
X = A$^{-1}$B

$or, \left ( \displaylines{x\\y} \right ) = \dfrac{1}{|A|} \left ( adjoint of A) \right ) × \left ( \displaylines{2\\3} \right )$

$= \dfrac{1}{-25} \left ( \displaylines{-5&-5\\-3&2} \right )\left ( \displaylines{2\\3} \right )$

$= \dfrac{1}{-25} \left ( \displaylines{ -5(2)-5(3)\\-3(2)+2(3) } \right )$

$= \dfrac{1}{-25} \left ( \displaylines{-10-15\\-6+6} \right )$

$= \dfrac{1}{-25} \left (\displaylines{-25\\0} \right )$

$= \left ( \displaylines { \frac{-25}{-25} \\ \frac{0}{-25} } \right )$

$= \left ( \displaylines{1\\0} \right )$

Hence, the required values of x and y are 1 and 0, respectively.


3. Solve the following system of equations with the help of matrix.


a) $3x + 4y = 5$ and $x - y = -3$

Solution:

Arranging the given equations in matrix form, we get,

$\left ( \displaylines{3&4\\1&-1} \right ) \left ( \displaylines{x \\y} \right ) = \left ( \displaylines{5\\-3} \right )$

i.e. AX = B

So,
A = $\left ( \displaylines{3&4\\1&-1} \right )$

|A| = $\left | \displaylines{3&4\\1&-1} \right )$

$= 3(-1) - 4(1)$

$= -3 - 4$

$= -7$

Since |A| ≠ 0, the system of linear equations have unique solutions.

We know,
X = A$^{-1}$B

$or, \left ( \displaylines{x\\y} \right ) = \dfrac{1}{|A|} \left ( Adjoint of A \right ) \left ( \displaylines{5\\-3} \right )$

$= \dfrac{1}{-7} \left ( \displaylines{-1&-4\\-1&3} \right ) \left ( \displaylines{5\\-3} \right)$

$= \dfrac{1}{-7} \left ( \displaylines{-1(5)-4(-3)\\-1(5)+3(-3)} \right )$

$= \dfrac{1}{-7} \left ( \displaylines{ -5+12\\-5-9} \right )$

$= \dfrac{1}{-7} \left ( \displaylines{7\\-14} \right )$

$= \left ( \displaylines{\frac{7}{-7} \\ \frac{-14}{-7} } \right )$

$= \left ( \displaylines{-1\\2} \right )$

Hence, the required values of x and y are -1 and 2, respectively.


c) $2x + 5y = 7$ and $x + 10y = -4$
Solution:

Arranging the given equations in matrix form, we get,

$\left ( \displaylines{2&5\\1&10} \right ) \left ( \displaylines{x \\y} \right ) = \left ( \displaylines{7\\-4} \right )$

i.e. AX = B

Now, solve and get the answer.


e) $4y - 5 = 0$ and $x - y + 3 = 0$
Solution:

Arranging the given equations in the form of ax + by = c,

(i) $4y - 5 = 0$
$or, 0x + 4y = 5$

(ii) $x - y + 3 = 0$
$or, x - y = -3$

Now,
Arranging the given system of equations in matrix form, we get,

$\left ( \displaylines{0&4\\1&-2} \right ) \left ( \displaylines{x \\y} \right ) = \left ( \displaylines{5\\-3} \right )$

Solve and get the answer.


g) $2x - 5y = 4$ and $4x + y = 30$
Solution:

Arranging the given system of solutions in matrix form, we get,

$\left ( \displaylines{ 2&-5\\4&1} \right ) \left ( \displaylines{x \\y} \right ) = \left ( \displaylines{4 \\30} \right )$

Now solve and get the answer.


i) $\frac{x}{7} - \frac{2y}{7} = -1 $ and $\frac{3x}{5} + \frac{7y}{5} = 1$
Solution:

Arranging the given system of equations in matrix form, we get,

$\left ( \displaylines { \frac{1}{7} & \frac{-2}{7} \\ \frac{3x}{5} & \frac{7y}{5} } \right ) \left ( \displaylines{x \\y} \right ) = \left ( \displaylines { -1 \\1} \right )$

Now, solve and get the answer.


k) $\frac{1}{x} - \frac{1}{2y} = 8$ and $\frac{1}{2x} - \frac{1}{y} = -1$
Solution:

Arranging the given system of equations in matrix form, we get,

$\left ( \displaylines{ 1 & \frac{-1}{2} \\ \frac{1}{2} & -1 } \right ) \left ( \displaylines{\frac{1}{x} \\ \frac{1}{y}} \right ) = \left ( \displaylines{8 \\-1 } \right )$

Now solve and get the answer.



m) $x + \frac{6}{y} - 7 = 0$ and $2xy + 4 = 10y$
Solution:

Arranging the equations,
(i) $x+ \frac{6}{y} = 7$

(ii) $2xy + 4 = 10y$

$or, 2(xy +2) = 2(5y)$

$or, xy + 2 = 5y$

Dividing by y

$or, \frac{xy}{y} + \frac{2}{y} = \frac{5y}{y}$

$or, x + \frac{2}{y} = 5$


Arranging the given equations in matrix form, we get,

$\left ( \displaylines{1&6\\1&2} \right ) \left ( \displaylines{x \\ \frac{1}{y}}\right ) = \left ( \displaylines{7\\5} \right )$

Now perform the operation, solve and get your answer.


About Readmore Optional Mathematics Book 10

Author: D. R. Simkhada
Editor: I. R. Simkhada

Readmore Publishers and Distributors
T.U. Road, Kuleshwor - 14, Kathmandu, Nepal
Phone: 4672071, 5187211, 5187226
readmorenepal6@gmail.com


About this page:


Solution of a System of Linear Equations - Class 10 | Readmore Optional Mathematics is a collection of the solutions related to exercises of solving simultaneous equations from the Matrix chapter using matrix method for Nepal's Secondary Education Examination (SEE) appearing students.

#SciPiPupil