3 - Solutions of a System of Linear Equations (Matrix)
In this post, you can check the solutions to the exercises of
solution of a system of linear equations of Matrix chapter of
Readmore Optional Mathematics by DR Simkhada. It consists of
complete answers to all odd questions mentioned in the
textbook.
Full answers will be uploaded on reaching 20 unique comments from
verified accounts.
Before starting, make sure to check the following note of
Determinant.
- Solutions of a system of Linear Equations - Matrix Class 10
Important Points:
- When the determinant of a matrix formed by a system of linear equations is zero (singular matrix), the equations have no unique solutions.
- The general form of matrix is AX = B.
- When AX = B, X = A$^{-1}$B.
- When XA = B, X = BA$^{-1}$.
- Always arrange both the equations in the form of ax + by = c.
- If the equation is ax + by - c = 0 then arrange it as ax + by = c to get correct solution.
Let,
Equation i: ax + by = c
Equation ii: gx + fy = z
Matrix form of above equations is:
$\left ( \displaylines{a & b\\g & f}\right) \left (
\displaylines{x \\y}\right ) = \left ( \displaylines{c \\ z} \right
)$
1. Check whether the following system of equations contain unique solutions or not.
a) 3x + 2y = 5 and 6x + 4y = 10
Solution:
Arranging in matrix form,
$\left ( \displaylines { 3&6\\2&4}\right ) \left ( \displaylines{x
\\y} \right ) = \left ( \displaylines{5 \\10} \right )$
i.e. AX = B
To check whether the system of equations contains unique solution or not,
we need to determine whether matrix A is
singular or non-singular matrix.
We have,
A = $\left ( \displaylines{ 3&6\\2&4} \right )$
$or, |A| = \left | \displaylines{3&6\\2&4} \right )$
$= 3(4) - 6(2)$
$= 12 - 12$
$= 0$
Since |A| = 0, the system of solutions does not have unique
solutions.
c) 3x - 5y = 7 and 5y - 3x + 2 = 0
Solution:
We need each equation in the form of ax + by = c
So,
Required equations are:
3x - 5y = 7
3x - 5y = 2
Arranging in matrix form, we get,
$\left ( \displaylines{3 & -5\\3&-5} \right ) \left (
\displaylines{x\\y} \right ) \left ( \displaylines{7\\2}\right )$
i.e. AX = B
Now,
|A| = $\left | \displaylines{3&-5\\3&-5}\right |$
$= 3(-5) - (-5)(3)$
$= -15 +15$
$= 0$
Since, matrix A is a singular matrix, given system of equations has
no unique solutions.
2. Find $\left ( \displaylines{x\\y}\right )$ when:
a) $\left ( \displaylines{-2&1\\-3&1} \right ) \left (
\displaylines{ x \\y} \right )\left ( \displaylines{11\\1} \right )$
Solution:
$\left ( \displaylines{-2&1\\-3&1} \right ) \left ( \displaylines{x
\\y} \right ) \left ( \displaylines{ 11\\1} \right )$
We have,
AX = B
So,
A = $\left ( \displaylines{ -2&1\\-3&1} \right )$
Now,
|A| = $\left | \displaylines{ -2&1\\-3&1} \right |$
$= 2(1) - (-3)1$
$= 2 + 3$
$= 5$
Since |A| ≠ 0, the system of equations have unique solutions.
And,
A$^{-1}$ = $\dfrac{1}{|A|} (adjoint of A)$
$= \dfrac{1}{5} \left ( \displaylines{ 1&-1\\3&2} \right )$
Also,
X = $A^{-1}B$
$or, \left ( \displaylines{ x\\y} \right )= \dfrac{1}{5} \left (
\displaylines{1&-1\\3&2} \right ) \left ( \displaylines{11\\1}
\right )$
$= \dfrac{1}{5} \left ( \displaylines{ 1(11) -1(1)\\3(11)+2(1) } \right
)$
$= \dfrac{1}{5} \left ( \displaylines{11-1\\33+2} \right )$
$= \dfrac{1}{5} \left ( \displaylines{10\\35} \right )$
$= \left ( \displaylines{ \frac{10}{5} \\ \frac{35}{5} } \right )$
$= \left ( \displaylines{ 2 \\7} \right )$
Hence, x = 2 and y = 7.
c) $\left ( \displaylines{2&5\\3&-5} \right ) \left (
\displaylines{x\\y} \right ) = \left ( \displaylines{2\\3} \right )$
Solution:
Given,
AX = B
So, A = $\left ( \displaylines{2&5\\3&-5} \right )$
|A| = $\left | \displaylines{2&5\\3&-5} \right )$
$= 2(-5) - 3(5)$
$= -10 - 15$
$= -25$
Since |A| ≠ 0, the system of equations has unique solutions.
We know,
X = A$^{-1}$B
$or, \left ( \displaylines{x\\y} \right ) = \dfrac{1}{|A|} \left ( adjoint
of A) \right ) × \left ( \displaylines{2\\3} \right )$
$= \dfrac{1}{-25} \left ( \displaylines{-5&-5\\-3&2} \right )\left
( \displaylines{2\\3} \right )$
$= \dfrac{1}{-25} \left ( \displaylines{ -5(2)-5(3)\\-3(2)+2(3) } \right
)$
$= \dfrac{1}{-25} \left ( \displaylines{-10-15\\-6+6} \right )$
$= \dfrac{1}{-25} \left (\displaylines{-25\\0} \right )$
$= \left ( \displaylines { \frac{-25}{-25} \\ \frac{0}{-25} } \right
)$
$= \left ( \displaylines{1\\0} \right )$
Hence, the required values of x and y are 1 and 0, respectively.
3. Solve the following system of equations with the help of matrix.
a) $3x + 4y = 5$ and $x - y = -3$
Solution:
Arranging the given equations in matrix form, we get,
$\left ( \displaylines{3&4\\1&-1} \right ) \left ( \displaylines{x
\\y} \right ) = \left ( \displaylines{5\\-3} \right )$
i.e. AX = B
So,
A = $\left ( \displaylines{3&4\\1&-1} \right )$
|A| = $\left | \displaylines{3&4\\1&-1} \right )$
$= 3(-1) - 4(1)$
$= -3 - 4$
$= -7$
Since |A| ≠ 0, the system of linear equations have unique solutions.
We know,
X = A$^{-1}$B
$or, \left ( \displaylines{x\\y} \right ) = \dfrac{1}{|A|} \left ( Adjoint
of A \right ) \left ( \displaylines{5\\-3} \right )$
$= \dfrac{1}{-7} \left ( \displaylines{-1&-4\\-1&3} \right ) \left
( \displaylines{5\\-3} \right)$
$= \dfrac{1}{-7} \left ( \displaylines{-1(5)-4(-3)\\-1(5)+3(-3)} \right
)$
$= \dfrac{1}{-7} \left ( \displaylines{ -5+12\\-5-9} \right )$
$= \dfrac{1}{-7} \left ( \displaylines{7\\-14} \right )$
$= \left ( \displaylines{\frac{7}{-7} \\ \frac{-14}{-7} } \right )$
$= \left ( \displaylines{-1\\2} \right )$
Hence, the required values of x and y are -1 and 2, respectively.
c) $2x + 5y = 7$ and $x + 10y = -4$
Solution:
Arranging the given equations in matrix form, we get,
$\left ( \displaylines{2&5\\1&10} \right ) \left ( \displaylines{x
\\y} \right ) = \left ( \displaylines{7\\-4} \right )$
i.e. AX = B
Now, solve and get the answer.
e) $4y - 5 = 0$ and $x - y + 3 = 0$
Solution:
Arranging the given equations in the form of ax + by = c,
(i) $4y - 5 = 0$
$or, 0x + 4y = 5$
(ii) $x - y + 3 = 0$
$or, x - y = -3$
Now,
Arranging the given system of equations in matrix form, we get,
$\left ( \displaylines{0&4\\1&-2} \right ) \left ( \displaylines{x
\\y} \right ) = \left ( \displaylines{5\\-3} \right )$
Solve and get the answer.
g) $2x - 5y = 4$ and $4x + y = 30$
Solution:
Arranging the given system of solutions in matrix form, we get,
$\left ( \displaylines{ 2&-5\\4&1} \right ) \left ( \displaylines{x
\\y} \right ) = \left ( \displaylines{4 \\30} \right )$
Now solve and get the answer.
i) $\frac{x}{7} - \frac{2y}{7} = -1 $ and $\frac{3x}{5} + \frac{7y}{5} =
1$
Solution:
Arranging the given system of equations in matrix form, we get,
$\left ( \displaylines { \frac{1}{7} & \frac{-2}{7} \\ \frac{3x}{5}
& \frac{7y}{5} } \right ) \left ( \displaylines{x \\y} \right ) = \left
( \displaylines { -1 \\1} \right )$
Now, solve and get the answer.
k) $\frac{1}{x} - \frac{1}{2y} = 8$ and $\frac{1}{2x} - \frac{1}{y} =
-1$
Solution:
Arranging the given system of equations in matrix form, we get,
$\left ( \displaylines{ 1 & \frac{-1}{2} \\ \frac{1}{2} & -1 }
\right ) \left ( \displaylines{\frac{1}{x} \\ \frac{1}{y}} \right ) = \left
( \displaylines{8 \\-1 } \right )$
Now solve and get the answer.
m) $x + \frac{6}{y} - 7 = 0$ and $2xy + 4 = 10y$
Solution:
Arranging the equations,
(i) $x+ \frac{6}{y} = 7$
(ii) $2xy + 4 = 10y$
$or, 2(xy +2) = 2(5y)$
$or, xy + 2 = 5y$
Dividing by y
$or, \frac{xy}{y} + \frac{2}{y} = \frac{5y}{y}$
$or, x + \frac{2}{y} = 5$
Arranging the given equations in matrix form, we get,
$\left ( \displaylines{1&6\\1&2} \right ) \left ( \displaylines{x
\\ \frac{1}{y}}\right ) = \left ( \displaylines{7\\5} \right )$
Now perform the operation, solve and get your answer.
About Readmore Optional Mathematics Book 10
Author: D. R. Simkhada
Editor: I. R. Simkhada
Readmore Publishers and Distributors
T.U. Road, Kuleshwor - 14, Kathmandu, Nepal
Phone: 4672071, 5187211, 5187226
readmorenepal6@gmail.com
About this page:
Solution of a System of Linear Equations - Class 10 | Readmore
Optional Mathematics is a collection of the solutions related to
exercises of solving simultaneous equations from the Matrix
chapter using matrix method for Nepal's Secondary Education
Examination (SEE) appearing students.
#SciPiPupil
5 Comments
Sir please put all solution where is full chapter questions solution we can't solve other by solving your 1 question😓😪😓😪
ReplyDeleteHave you already studied this chapter in your school?
DeleteShare this post. Have 10 friends to comment here and all odd questions solutions of this chapter will be updated.
DeleteSir provide al solution of cramers rule you have only done 1 question how to solve other question pls provide all solution😪😓😂
ReplyDeleteIt has been updated. You can check it now.
DeleteYou can let us know your questions in the comments section as well.