Question: Prove that: \dfrac{cos2A}{1+ sin2A} = \dfrac{1- tanA}{1+ tanA}
Solution:
Taking LHS,
= \dfrac{cos2A}{1+ sin2A}
Expanding cos2A and sin2A and identity of 1
= \dfrac{cos^2A - sin^2A}{sin^2A + cos^2A + sin2A}
Performing simple mathematical operations
= \dfrac{(cosA + sinA)(cosA - sinA)}{(cosA + sinA)^2}
= \dfrac{cosA - sinA}{cosA + sinA}
Dividing each term by cosA
= \dfrac{\frac{cosA}{cosA} - \frac{sinA}{cosA} }{\frac{cosA}{cosA} + \frac{sinA}{cosA}}
We know, [\frac{sinA}{cosA} = tanA]
= \dfrac{1 - tanA}{1 + tanA}
= RHS
#proved
4 Comments
how did (cosA+sinA)whole square become????? in step no 3
ReplyDeletesin2A = 2sinAcosA
Deleteand,
cos^2A + sin^2A + 2sinAcosA
= (cosA +sinA)^2
$= \dfrac{\frac{cosA}{cosA} - \frac{sinA}{cosA} }{\frac{cosA}{cosA} + \frac{sinA}{cosA}}¢
ReplyDeletewhat is this
Thank you for your concern. We have fixed it.
DeleteYou can let us know your questions in the comments section as well.