Prove: $\dfraf{cos³A + sin³A}{cosA + sinA} = \frac{1}{2} (2 - sin2A)$
Solution:
LHS
$= \dfrac{cos³A + sin³A}{cosA + sinA}$
$= \dfrac{(cosA)^3 + (sinA)^3}{cosA + sinA}$
Expand the numerator using the factorisation formula of (a³+b³)
$= \dfrac{(cosA + sinA)(cos²A - sinAcosA + sin²A)}{(cosA + sinA)}$
$= cos²A - sinAcosA + sin²A$
$= (cos²A + sin²A) - sinAcosA$
Use the identity of (cos²A + sin²A = 1)
$= (1- sinAcosA)$
Multiply and divide the expression by 2 to get closer to your RHS
$= \dfrac{2}{2} × (1 - sinAcosA)$
$= \dfrac{1}{2} (2-2sinAcosA)$
Use the formula of sin2A to contract the expression
$= \dfrac{1}{2} (2- sin2A)$
RHS
See more solutions of Trigonometry:
0 Comments
You can let us know your questions in the comments section as well.