Prove: \dfraf{cos³A + sin³A}{cosA + sinA} = \frac{1}{2} (2 - sin2A)
Solution:
LHS
= \dfrac{cos³A + sin³A}{cosA + sinA}
= \dfrac{(cosA)^3 + (sinA)^3}{cosA + sinA}
Expand the numerator using the factorisation formula of (a³+b³)
= \dfrac{(cosA + sinA)(cos²A - sinAcosA + sin²A)}{(cosA + sinA)}
= cos²A - sinAcosA + sin²A
= (cos²A + sin²A) - sinAcosA
Use the identity of (cos²A + sin²A = 1)
$= (1- sinAcosA)$
Multiply and divide the expression by 2 to get closer to your RHS
= \dfrac{2}{2} × (1 - sinAcosA)
= \dfrac{1}{2} (2-2sinAcosA)
Use the formula of sin2A to contract the expression
= \dfrac{1}{2} (2- sin2A)
RHS
See more solutions of Trigonometry:
0 Comments
You can let us know your questions in the comments section as well.