Prove the following identity: \dfrac{sin4A}{cos2A} × \dfrac{1 - cos2A}{1 - cos4A} = tanA

Solution:

LHS

= \dfrac{sin4A}{cos2A} × \dfrac{1 - cos2A}{1 - cos4A}

= \dfrac{2sin2Acos2A}{cos2A} × \dfrac{1 - cos2A}{1 - cos4A}

= 2sin2A × \dfrac{1 - cos2A}{1 - cos4A}

Remember this identity: (1 - cos2A) = 2sin²A

= 2sin2A × \dfrac{2sin²A}{1 - cos(2×2A)}

Again use the same above mentioned identity

= 2sin2A × \dfrac{2sin²A}{2sin²2A}

= \dfrac{2sin2A}{2sin²2A} × 2sin²A

= \dfrac{1}{sin2A} × 2sin²A

Use the multiple angles formula of sin2A = 2sinAcosA

= \dfrac{1}{2sinAcosA} × 2sin²A

= \dfrac{sinA}{cosA}

= tanA

RHS

See more solutions of Trigonometry: