Prove the following identity: \dfrac{sin4A}{cos2A} × \dfrac{1 - cos2A}{1 - cos4A} = tanA
Solution:
LHS
= \dfrac{sin4A}{cos2A} × \dfrac{1 - cos2A}{1 - cos4A}
= \dfrac{2sin2Acos2A}{cos2A} × \dfrac{1 - cos2A}{1 - cos4A}
= 2sin2A × \dfrac{1 - cos2A}{1 - cos4A}
Remember this identity: (1 - cos2A) = 2sin²A
= 2sin2A × \dfrac{2sin²A}{1 - cos(2×2A)}
Again use the same above mentioned identity
= 2sin2A × \dfrac{2sin²A}{2sin²2A}
= \dfrac{2sin2A}{2sin²2A} × 2sin²A
= \dfrac{1}{sin2A} × 2sin²A
Use the multiple angles formula of sin2A = 2sinAcosA
= \dfrac{1}{2sinAcosA} × 2sin²A
= \dfrac{sinA}{cosA}
= tanA
RHS
See more solutions of Trigonometry:
0 Comments
You can let us know your questions in the comments section as well.