1 - 2sin^2 \left ( \dfrac{\pi}{4} - \dfrac{\theta}{2} \right ) = sin \theta

Solution:

LHS

= 1 - 2sin^2 \left ( \dfrac{\pi}{4} - \dfrac{\theta}{2} \right )

[Using formula, cos2A = 1 - 2sin²A]

= cos 2\left ( \dfrac{\pi}{4} - \dfrac{\theta}{2} \right )

= cos \left ( \dfrac{\pi}{4} × 2 - \dfrac{\theta}{2} × 2 \right )

= cos \left ( \dfrac{\pi}{2} - \theta \right )

= cos (90° - \theta)

= sin \theta

RHS