1 - 2sin^2 \left ( \dfrac{\pi}{4} - \dfrac{\theta}{2} \right ) = sin \theta
Solution:
LHS
= 1 - 2sin^2 \left ( \dfrac{\pi}{4} - \dfrac{\theta}{2} \right )
[Using formula, cos2A = 1 - 2sin²A]
= cos 2\left ( \dfrac{\pi}{4} - \dfrac{\theta}{2} \right )
= cos \left ( \dfrac{\pi}{4} × 2 - \dfrac{\theta}{2} × 2 \right )
= cos \left ( \dfrac{\pi}{2} - \theta \right )
= cos (90° - \theta)
= sin \theta
RHS
0 Comments
You can let us know your questions in the comments section as well.