$1 - 2sin^2 \left ( \dfrac{\pi}{4} - \dfrac{\theta}{2} \right ) = sin \theta$
Solution:
LHS
$= 1 - 2sin^2 \left ( \dfrac{\pi}{4} - \dfrac{\theta}{2} \right )$
[Using formula, cos2A = 1 - 2sin²A]
$= cos 2\left ( \dfrac{\pi}{4} - \dfrac{\theta}{2} \right )$
$= cos \left ( \dfrac{\pi}{4} × 2 - \dfrac{\theta}{2} × 2 \right )$
$= cos \left ( \dfrac{\pi}{2} - \theta \right )$
$= cos (90° - \theta)$
$= sin \theta$
RHS
0 Comments
You can let us know your questions in the comments section as well.