Prove that:

(cosA - cosB)^2 + (sinA - sinB)^2 = 4sin^2 \left ( \dfrac{A-B}{2} \right )

LHS

= (cosA - cosB)^2 + (sinA - sinB)^2

[Expanding the formulae]

= cos^2A + cos^2B - 2cosAcosB + sin^2A + sin^2B - 2sinAsinB

= (cos^2A + sin^2A )+ (cos^2B + sin^2B )- 2(sinAsinB + cosAcosB)

[Using trigonometric identity: cos²A + sin²A = 1]

= 1+1-2(cosAcosB + sinAsinB)

= 2 - 2cos(A-B)

= 2(1 - cos(A - B)

[cos2A = 1 - 2sin²A]

= 2\left [ 1 - \left (1 - 2sin^2 \dfrac{A-B}{2} \right ) \right ]

= 2 \left [ 1 - 1 + 2sin^2 \dfrac{A-B}{2} \right ]

= 2 × 2sin^2 \dfrac{A-B}{2}

= 4sin^2 \dfrac{A-B}{2}

RHS