Prove that:
$(cosA - cosB)^2 + (sinA - sinB)^2 = 4sin^2 \left ( \dfrac{A-B}{2} \right )$
LHS
$= (cosA - cosB)^2 + (sinA - sinB)^2$
[Expanding the formulae]
$= cos^2A + cos^2B - 2cosAcosB + sin^2A + sin^2B - 2sinAsinB$
$= (cos^2A + sin^2A )+ (cos^2B + sin^2B )- 2(sinAsinB + cosAcosB)$
[Using trigonometric identity: cos²A + sin²A = 1]
$= 1+1-2(cosAcosB + sinAsinB)$
$= 2 - 2cos(A-B)$
$= 2(1 - cos(A - B)$
[cos2A = 1 - 2sin²A]
$= 2\left [ 1 - \left (1 - 2sin^2 \dfrac{A-B}{2} \right ) \right ]$
$= 2 \left [ 1 - 1 + 2sin^2 \dfrac{A-B}{2} \right ]$
$= 2 × 2sin^2 \dfrac{A-B}{2}$
$= 4sin^2 \dfrac{A-B}{2}$
RHS
0 Comments
You can let us know your questions in the comments section as well.