Prove that:
(cosA - cosB)^2 + (sinA - sinB)^2 = 4sin^2 \left ( \dfrac{A-B}{2} \right )
LHS
= (cosA - cosB)^2 + (sinA - sinB)^2
[Expanding the formulae]
= cos^2A + cos^2B - 2cosAcosB + sin^2A + sin^2B - 2sinAsinB
= (cos^2A + sin^2A )+ (cos^2B + sin^2B )- 2(sinAsinB + cosAcosB)
[Using trigonometric identity: cos²A + sin²A = 1]
= 1+1-2(cosAcosB + sinAsinB)
= 2 - 2cos(A-B)
= 2(1 - cos(A - B)
[cos2A = 1 - 2sin²A]
= 2\left [ 1 - \left (1 - 2sin^2 \dfrac{A-B}{2} \right ) \right ]
= 2 \left [ 1 - 1 + 2sin^2 \dfrac{A-B}{2} \right ]
= 2 × 2sin^2 \dfrac{A-B}{2}
= 4sin^2 \dfrac{A-B}{2}
RHS
0 Comments
You can let us know your questions in the comments section as well.