Prove the following trigonometric identity: \dfrac{2sinA + sin2A}{2sinA - sin2A} = cot^2 \frac{A}{2}
Solution:
LHS
= \dfrac{2sinA + sin2A}{2sinA - sin2A}
[Using sin2A = 2sinAcosA]
= \dfrac{2sinA + 2sinAcosA}{2sinA - 2sinAcosA}
= \dfrac{2sinA(1+cosA)}{2sinA(1-cosA)}
= \dfrac{1 + cosA}{1-cosA}
[Using sub-multiple angle formula of cosA]
= \dfrac{1 + (2cos^2\frac{A}{2} - 1)}{1-(1-2sin^2\frac{A}{2})}
= \dfrac{1 + 2cos^2 \frac{A}{2} -1}{1 - 1 + 2sin^2 \frac{A}{2}}
= \dfrac{2cos^2 \frac{A}{2}}{2sin^2 \frac{A}{2}}
= \dfrac{cos^2 \frac{A}{2}}{sin^2 \frac{A}{2}}
= cot^2 \frac{A}{2}
RHS
#proved
1 Comments
Make the solution in normal language
ReplyDeleteYou can let us know your questions in the comments section as well.