Prove the following trigonometric identity: \dfrac{2sinA + sin2A}{2sinA - sin2A} = cot^2 \frac{A}{2}


Solution:

LHS

= \dfrac{2sinA + sin2A}{2sinA - sin2A}

[Using sin2A = 2sinAcosA]

= \dfrac{2sinA + 2sinAcosA}{2sinA - 2sinAcosA}

= \dfrac{2sinA(1+cosA)}{2sinA(1-cosA)}

= \dfrac{1 + cosA}{1-cosA}

[Using sub-multiple angle formula of cosA]

= \dfrac{1 + (2cos^2\frac{A}{2} - 1)}{1-(1-2sin^2\frac{A}{2})}

= \dfrac{1 + 2cos^2 \frac{A}{2} -1}{1 - 1 + 2sin^2 \frac{A}{2}}

= \dfrac{2cos^2 \frac{A}{2}}{2sin^2 \frac{A}{2}}

= \dfrac{cos^2 \frac{A}{2}}{sin^2 \frac{A}{2}}

= cot^2 \frac{A}{2}

RHS

#proved