Prove the following trigonometric identity: $\dfrac{2sinA + sin2A}{2sinA - sin2A} = cot^2 \frac{A}{2}$
Solution:
LHS
$= \dfrac{2sinA + sin2A}{2sinA - sin2A}$
[Using sin2A = 2sinAcosA]
$= \dfrac{2sinA + 2sinAcosA}{2sinA - 2sinAcosA}$
$= \dfrac{2sinA(1+cosA)}{2sinA(1-cosA)}$
$= \dfrac{1 + cosA}{1-cosA}$
[Using sub-multiple angle formula of cosA]
$= \dfrac{1 + (2cos^2\frac{A}{2} - 1)}{1-(1-2sin^2\frac{A}{2})}$
$= \dfrac{1 + 2cos^2 \frac{A}{2} -1}{1 - 1 + 2sin^2 \frac{A}{2}}$
$= \dfrac{2cos^2 \frac{A}{2}}{2sin^2 \frac{A}{2}}$
$= \dfrac{cos^2 \frac{A}{2}}{sin^2 \frac{A}{2}}$
$= cot^2 \frac{A}{2}$
RHS
#proved
1 Comments
Make the solution in normal language
ReplyDeleteYou can let us know your questions in the comments section as well.