3 - Transformation of Trigonometric Ratios (Trigonometry)
In this post, you can check the solutions to the exercises of
Transformation of Trigonometric Ratios of Trigonometry Unit of
Readmore Optional Mathematics by DR Simkhada. It consists of
complete answers to all odd questions mentioned in the
textbook.
Before starting, here is a quick revision of the formulae from this
chapter:
- $sinC + sinD = 2sin\dfrac{C+D}{2}cos \dfrac{C-D}{2}$
- $sinC - sinD = 2cos\dfrac{C+D}{2}sin\dfrac{C-D}{2}$
- $cosC + cosD = 2cos\dfrac{C+D}{2}cos\dfrac{C-D}{2}$
- $cosC - cosD = 2sin\dfrac{C+D}{2}sin\dfrac{D-C}{2}$
- $2sinAcosB = sin(A+B) + sin(A-B)$
- $2cosAsinB = sin(A+B) - sin(A-B)$
- $2cosAcosB = cos(A+B) + cos(A-B)$
- $2sinAsinB = cos(A-B) - cos(A+B)$
Here are more solutions from Algebra:
- Multiple Angles
- Sub-Multiple Angles
- Transformation of Trigonometric Ratios
Now, you can check the solutions below. But, make sure to check the
description after the solution to know more about this textbook
series, author, and the publisher.
1. Express each of the following as a sum or difference:
$a) 2cos85°cos45°$
Solution:
We know,
$2cosAcosB = cos(A+B)+cos(A-B)$
So,
$2cos85°cos45°$
$= cos(85°+45°)+cos(85°-45°)$
$= cos130° + cos 40°$
$b) 2sin27°cos15°$
Solution:
We know,
$2sinAcosB = sin(A +B) + sin(A-B)$
So,
$2sin27°cos15°$
$= sin(27°+15°) + sin(27°-15°)$
$= sin42° + sin12°$
$c) 2cos7\theta.sin3\theta$
Solution:
We know,
$2cosAsinB = sin(A+B) - sin(A-B)$
So,
$2cos 7\theta sin3\theta$
$= sin(7\theta + 3\theta) - sin(7\theta - 3\theta)$
$= sin10\theta - sin4\theta$
$d) sin16°.cos42°$
Solution:
We know,
$2sinAcosB = sin(A + B) + sin(A - B)$
So,
$sin16°cos42°$
$= sin16°cos42° × \dfrac{2}{2}$
$= \dfrac{2sin16°cos42°}{2}$
$= \dfrac{sin(16°+42°)+sin(16°-42°)}{2}$
$= \dfrac{sin58° - sin26°}{2}$
$e) sin3\theta. sin7\theta$
Solution:
We know,
$2sinAsinB = cos(A-B)-cos(A+B)$
So,
$sin3\theta.sin7\theta$
$= sin3\theta. sin7\theta × \dfrac{2}{2}$
$= \dfrac{cos(3\theta - 7\theta) - cos (3\theta + 7\theta)}{2}$
$= \dfrac{cos(-4\theta) - cos 10\theta}{2}$
$= \dfrac{cos4\theta - cos10\theta}{2}$
$f) sin13°.cos115°$
Solution:
We know,
$2sinAcosB = sin(A +B) + sin(A-B)$
So,
$sin13°.cos115°$
$= sin13°.cos115° × \dfrac{2}{2}$
$= \dfrac{2sin13°cos115°}{2}$
$= \dfrac{sin(13°+115°)+sin(13°-115°)}{2}$
$= \dfrac{sin128° + sin(-102°)}{2}$
$= \dfrac{sin128° - sin102°}{2}$
2. Find the value of:
$a) 2sin75°sin45°$
Solution:
$2sin75°sin45°$
$= cos(75°-45°) - cos(75°+45°)$
$= cos30° - cos120°$
$= cos30° - (-sin30°)$
$= cos30° + sin30°$
$= \dfrac{√3}{2} + \dfrac{1}{2}$
$= \dfrac{√3+1}{2}$
b) 2cos105°cos15°
Solution:
$2cos105°cos15°$
$= cos(105°+15°)+cos(105°-15°)$
$= cos120° + cos90°$
$= - sin30° + 0$
$= - \dfrac{1}{2}$
c) sin15°sin105°
Solution:
$sin15°sin105°$
$= sin15°sin105° × \dfrac{2}{2}$
$= \dfrac{2sin15°sin105°}{2}$
$= \dfrac{cos(15°-105°) - cos(15°+105°)}{2}$
$= \dfrac{cos(-90°) - cos120°}{2}$
$= \dfrac{cos90° - (-sin30°)}{2}$
$= \dfrac{0 + sin30°}{2}$
$= \dfrac{sin30°}{2}$
$= \dfrac{ \dfrac{1}{2}}{2}$
$= \dfrac{1}{4}$
3. Express the following sum or difference into product of trigonometric ratios.
Important Formulae:
- $sinC + sinD = 2sin\dfrac{C+D}{2}cos \dfrac{C-D}{2}$
- $sinC - sinD = 2cos\dfrac{C+D}{2}sin\dfrac{C-D}{2}$
- $cosC + cosD = 2cos\dfrac{C+D}{2}cos\dfrac{C-D}{2}$
- $cosC - cosD = 2sin\dfrac{C+D}{2}sin\dfrac{D-C}{2}$
a) sin80° + sin16°
Solution:
$sin80° + sin16°$
$= 2 sin \dfrac{80°+16°}{2} cos \dfrac{80°-16°}{2}$
$= 2 sin\dfrac{96°}{2} cos \dfrac{64°}{2}$
$= 2sin48°cos32°$
c) cos30° - cos80°
Solution:
$cos30° - cos80°$
$= 2 sin\dfrac{30°+80°}{2} sin\dfrac{80°-30°}{2}$
$= 2 sin\dfrac{110°}{2} sin\dfrac{50°}{2}$
$= 2sin55°sin25°$
e) cos80° - cos40°
Solution:
$cos80° - cos40°$
$= 2sin\dfrac{80°+40°}{2} sin\dfrac{40°-80°}{2}$
$= 2sin\dfrac{120°}{2} sin\dfrac{-40°}{2}$
$= 2sin60°sin(-20°)$
$= -2× \dfrac{√3}{2} × sin20°$
$= -√3sin20°$
4. Find the value of:
a) sin75° - sin15°
Solution:
$sin75° - sin15°$
$= 2 cos \dfrac{75°+15°}{2} sin \dfrac{75°-15°}{2}$
$= 2 cos \dfrac{90°}{2} sin\dfrac{60°}{2}$
$= 2 cos45° sin30°$
$= 2 × \dfrac{1}{√2} × \dfrac{1}{2}$
$= \dfrac{1}{√2}$
c) cos15° - cos75°
Solution:
$cos 15° - cos75°$
$= 2 sin \dfrac{15°+75°}{2} sin \dfrac{75°-15°}{2}$
$= 2 sin\dfrac{90°}{2} sin\dfrac{60°}{2}$
$= 2sin45°sin30°$
$= 2 × \dfrac{1}{√2} × \dfrac{1}{2}$
$= \dfrac{1}{√2}$
e) cos130° + cos110° + cos10°
Solution:
$cos130° + cos110° + cos10°$
$= 2 cos \dfrac{130°+110°}{2} cos\dfrac{130°-110°}{2} + cos10°$
$= 2cos\dfrac{240°}{2} cos \dfrac{20°}{2} + cos10°$
$= 2 cos120°cos10° + cos10°$
$= 2 (-sin30°) cos10° + cos10°$
$= - 2 × \dfrac{1}{2} cos10° + cos10°$
$= -cos10° + cos10°$
$= 0$
5. Prove that:
$a) cos15°.sin75° = \dfrac{2+√3}{4}$
Solution:
LHS
$= cos15° sin75°$
$= cos15°sin75° × \dfrac{2}{2}$
$= \dfrac{2cos15°sin75°}{2}$
$= \dfrac{sin(15°+75°) - sin(15°-75°)}{2}$
$= \dfrac{sin90° - sin(-60°)}{2}$
$= \dfrac{1 + sin60°}{2}$
$= \dfrac{1 + \dfrac{√3}{2}}{2}$
$= \dfrac{\dfrac{2+√3}{2}}{2}$
$= \dfrac{2+√3}{4}$
RHS
c) 2 sin(45°+2A) cos(45°-2A) = 1 + sin4A
Solution:
LHS
$= 2sin(45°+2A)cos(45°-2A)$
$= sin[(45°+2A)+(45°-2A)] + sin[(45°+2A)-(45°-2A)]$
$= sin[90°] + sin[45°+2A-45°+2A]$
$= 1 + sin4A$
RHS
$e) \ cos \frac{3 \pi}{13} cos \frac{5\pi}{13} - cos \frac{8 \pi}{13} cos
\frac{10 \pi}{13} = 0$
Solution:
LHS
$= cos \frac{3 \pi}{13} cos \frac{5 \pi}{13} - cos \frac{8 \pi}{13} cos
\frac{10 \pi}{13}$
$= [cos \frac{3 \pi}{13} cos \frac{5 \pi}{13} - cos \frac{8\pi}{13} cos
\frac{10 \pi}{13} ] × \dfrac{2}{2}$
$= \dfrac{1}{2} [2cos \frac{3\pi}{13} cos \frac{5 \pi}{13} - 2cos \frac{8
\pi}{13} cos \frac{10 \pi}{13} ]$
$= \dfrac{1}{2} [cos ( \frac{3 \pi}{13} + \frac{5 \pi}{13} ) + cos (
\frac{3 \pi}{13} - cos \frac{5 \pi}{13} ) - cos (\frac{8 \pi}{13} + \frac{10
\pi}{13}) - cos ( \frac{ 8 \pi}{13} - frac{10 \pi}{13} )]$
$= \dfrac{1}{2} [cos \frac{8 \pi}{13} + cos \frac{-2 \pi}{13} - cos
\frac{18 \pi}{13} - cos \frac{-2 \pi}{13}]$
$= \dfrac{1}{2} [cos \frac{8\pi}{13} + cos \frac{2 \pi}{13} - cos \frac{18
\pi}{13} - cos \frac{2 \pi}{13}]$
$= \dfrac{1}{2} [cos \frac{8 \pi}{13} - cos \frac{18 \pi}{13}]$
$= \dfrac{1}{2} [ 2 sin ( \frac{8\pi}{13} + frac{18 \pi}{13}) sin (
\frac{18 \pi}{13} - \frac{8 \pi}{13} )]$
$= sin \frac{8\pi+18\pi}{13} sin \frac{18 \pi - 8\pi}{13}$
$= sin \frac{26 \pi}{13} sin \frac{10 \pi}{13}$
$= sin (2 \pi) sin\frac{10 \pi}{13}$
$= sin360° × sin \frac{10 \pi}{13}$
$= 0 × sin \frac{10 \pi}{13}$
$= 0$
RHS
6. Prove that:
a) tan50° - tan40° = 2 tan10°
Solution:
LHS
$= tan 50° - tan40°$
$= \dfrac{sin50°}{cos 50°} - \dfrac{sin40°}{cos40°}$
$= \dfrac{sin50°cos40° - cos50°sin40°}{cos50°cos40°}$
[Using sinAcosB + cosAsinB = sin(A-B)]
$= \dfrac{sin(50°-40°)}{cos40°cos50°}$
$= \dfrac{sin10°}{cos40°cos50°} × \dfrac{2}{2}$
$= \dfrac{2sin10°}{2cos40°cos50°}$
$= \dfrac{2sin10°}{cos (40°+50° ) + cos (40°-50°)}$
$= \dfrac{2sin10°}{ cos90° + cos(-10°)}$
$= \dfrac{2sin10°}{0 + cos10°}$
$= \dfrac{2sin10°}{cos10°}$
$= 2tan10°$
RHS
c) 2tan40° = tan65° - tan25°
Solution:
Taking RHS
$= tan65° - tan25°$
$= \dfrac{sin65°}{cos65°} - \dfrac{sin25°}{cos25°}$
$= \dfrac{sin65°cos25° - cos65°sin25°}{cos65°cos25°}$
[Using sinAcosB-cosAsinB = sin(A-B)]
$= \dfrac{sin(65°-25°)}{cos65°cos25°} × \dfrac{2}{2}$
$= \dfrac{2sin40°}{2cos25°cos65°}$
$= \dfrac{2sin40°}{cos(25°+65°) + cos(25°-65°)}$
$= \dfrac{2sin40°}{cos90° + cos(-40°)}$
$= \dfrac{2sin40°}{cos40°}$
$= 2 tan 40°$
LHS
7. Prove that:
$a) \dfrac{cos285° + cos345°}{sin435° - sin375°} = √3$
Solution:
LHS
$= \dfrac{cos285° + cos345°}{sin435° - sin375°}$
$= \dfrac{cos285° + cos345°}{sin435° - sin375°}$
$= \dfrac{ 2 cos \frac{285°+345°}{2} cos \frac{285°-345°}{2} }{ 2cos
\frac{435°+375°}{2} sin \frac{435°-375°}{2} }$
$= \dfrac{2cos\frac{630°}{2} cos \frac{-60°}{2}}{ 2cos \frac{810°}{2} sin
\frac{60°}{2}}$
$= \dfrac{cos 315° cos30°}{cos405°sin30°}$
$= \dfrac{cos(360°-45°)cos30°}{cos(360°+45°)sin30°}$
$= \dfrac{cos45° cos30°}{cos45° sin30°}$
$= \dfrac{cos30°}{sin30°}$
$= \dfrac{ \dfrac{√3}{2}}{\dfrac{1}{2}}$
$= \dfrac{√3}{2} × 2$
$= √3$
RHS
8. Prove that:
$a) sin20° sin40° sin80° = \dfrac{√3}{8}$
Solution:
LHS
$= sin20° sin40° sin80°$
$= \dfrac{2}{2} sin20° sin40° sin80°$
$= \dfrac{1}{2} [2sin20°sin80°]sin40°$
$= \dfrac{1}{2} [cos(20°-80°)-cos(20°+80°)]sin40°$
$= \dfrac{1}{2} [cos60° - cos100°]sin40°$
$= \dfrac{1}{2} [\frac{1}{2} - cos(90°+10°)]sin40°$
$= \dfrac{1}{2} [ \frac{1}{2} + sin10°] sin40°$
$= \dfrac{1}{2} [ \frac{1 + 2sin10°}{2} ] sin40°$
$= \dfrac{1}{4} [ sin40° + 2sin10°sin40°]$
$= \dfrac{1}{4} [sin40° + cos(10°-40°) - cos(10°+40°)]$
$= \dfrac{1}{4} [sin40° + cos30° - cos50°]$
$= \dfrac{1}{4} [sin40° + cos30° - cos(90°-40°)]$
$= \dfrac{1}{4} [sin40° + cos30° - sin40°]$
$= \dfrac{1}{4} × cos30°$
$= \dfrac{1}{4} × \dfrac{√3}{2}$
$= \dfrac{√3}{8}$
RHS
9) Prove that:
$a) cos \theta cos (60° + \theta) cos (60° - \theta) = \dfrac{1}{4} cos 3\theta$
Solution:
LHS
$= cos \theta cos(60°+\theta) cos (60°-\theta)$
$= \dfrac{2}{2} × cos\theta cos (60° + \theta) cos (60° - \theta)$
$= \dfrac{cos \theta × 2cos(60°+\theta)cos(60°-\theta)}{2} $
$= \dfrac{cos \theta × [cos\{60°+\theta+(60°-\theta)\} + cos\{ 60° + \theta - (60° - \theta)\} ]}{2}$
$= \dfrac{cos \theta ×[cos120° + cos2\theta]}{2}$
$= \dfrac{cos \theta × [- \frac{1}{2} + cos 2\theta]}{2}$
$= \dfrac{cos \theta × \dfrac{2cos2\theta - 1}{2}}{2}$
$= \dfrac{1}{4} × [cos \theta (2cos 2\theta -1)]$
$= \dfrac{1}{4} × [2cos 2\theta cos \theta - cos\theta]$
$= \dfrac{1}{4} × [cos(2\theta + cos\theta) + cos(2\theta - cos\theta) - cos\theta]$
$= \dfrac{1}{4} × [cos3\theta + cos\theta - cos\theta]$
$= \dfrac{1}{4} cos3\theta$
RHS
About Readmore Optional Mathematics Book 10
Author: D. R. Simkhada
Editor: I. R. Simkhada
Readmore Publishers and Distributors
T.U. Road, Kuleshwor - 14, Kathmandu, Nepal
Phone: 4672071, 5187211, 5187226
readmorenepal6@gmail.com
About this page:
Transformation of Trigonometric Ratios - Solved Exercises | Class
10 Readmore Optional Mathematics is a collection of the solutions
related to exercises of Transformation of Trigonometric Ratios
from the Trigonometry chapter for Nepal's Secondary Education
Examination (SEE) appearing students.
#SciPiPupil
8 Comments
Sir add all solutions of 7 ,8,9,10,11 you have give solun of only 1 question how to do other question 😓provide all solution for great future
ReplyDeleteSir could you add solution?
ReplyDeleteसर कुरा सुनेर add gardinu pls😓
ReplyDeletecould you add all the solutions
ReplyDeleteCould you add all solun
ReplyDeleteThanks
ReplyDeleteSir 11 no. Prove that ni add garuhola hai please
ReplyDeletegive all solution
ReplyDeleteYou can let us know your questions in the comments section as well.