Question: If $a,b,c$ are in AP, then $\dfrac{(a-c)^2}{b^2 - ac}$ equals
Answer: 4
Solution:
Given,
$= \dfrac{(a-c)^2}{b^2 - ac}$
$= \dfrac{(a+c)^2 - 4ac}{b^2 - ac}$
$= \dfrac{ (\frac{(a+c)^2}{4} - \frac{4ac}{4} )*4}{b^2 - ac}$
We know, $b = \frac{a+c}{2}$
$= \dfrac{b^2 - ac}{b^2 - ac} * 4$
$= 4$
0 Comments
You can let us know your questions in the comments section as well.