Solution:

Given,

sin \frac{\theta}{3} = \frac{1}{2} \left ( m + \dfrac{1}{m} \right )

Now,

sin \theta

= 3sin \frac{\theta}{3} - 4sin^3 \frac{\theta}{3}

= sin \frac{\theta}{3} \left ( 3 - 4 sin^2 \frac{\theta}{3} \right )

= sin \frac{\theta}{3} \left ( 3 - 4 \left [ \dfrac{1}{2} \left ( m + \frac{1}{m} \right ) \right ]^2 \right )

= sin \frac{\theta}{3} \left ( 3 - 4 × \dfrac{1}{4} \left ( m^2 + 2 + \frac{1}{m^2} \right ) \right )

= sin \frac{\theta}{3} \left (3 - m^2 - 2 - \frac{1}{m^2} \right )

= \dfrac{1}{2} \left (m + \dfrac{1}{m} \right ) × - \left ( \m^2 -1 + \dfrac{1}{m^2} \right )

[Using (a + b)(a²-ab+b²) = a³+b³]

= - \dfrac{1}{2} \left ( m^3+ \dfrac{1}{m^3} \right )

RHS

#proved