Solution:

LHS

= \dfrac{sin 2\theta}{1 + cos 2\theta} × \dfrac{cos \theta}{1 + cos\theta}

= \dfrac{sin 2\theta}{1 + 2cos^2 \theta - 1} × \dfrac{cos \theta}{1 + cos\theta}

= \dfrac{2sin \theta cos\theta}{2cos^2 \theta} × \dfrac{cos \theta}{1 + cos\theta}

= \dfrac{sin \theta}{cos \theta} × \dfrac{cos\theta}{1 + cos\theta}

= \dfrac{sin \theta}{1 + cos\theta}

= \dfrac{2 sin \frac{ \theta}{2} cos\frac{\theta}{2}}{1 + 2cos^2 \frac{\theta}{2} - 1}

= \dfrac{2 sin \frac{ \theta}{2} cos \frac{\theta}{2}}{2 cos^2 \frac{\theta}{2}}

= \dfrac{sin \frac{\theta}{2}}{cos \frac{\theta}{2}}

= tan \frac{\theta}{2}

RHS