1. Scalar Product of Vectors

Notes:
  1. We can perform addition, subtraction and multiplication of vector quantities. However, division of them is not possible.
  2. During multiplication, we may get a scalar result or a vector result depending upon the type of multiplication we choose.
  3. There are two types of multiplication of vectors: Dot Product and Cross Product.
  4. In class 10, we have discussed only Dot Product and this always gives us a scalar quantity as a result.
  5. \vec{a}.\vec{b} = |\vec{a}|.|\vec{b}| cos \theta
Important:
  1. When \theta = 90°, \vec{a}.\vec{b}=0

1. Find the scalar product of given pair of vectors:

a) \vec{a} = 4\vec{i} + 6\vec{j} and \vec{b} = 6\vec{i} + 7 \vec{j}
Solution:

Here,
\vec{a} = 4\vec{i} + 6\vec{j} = (4,6)

\vec{b} = 6\vec{i} + 7 \vec{j} = (6,7)

\vec{a}.\vec{b} = (4*6+ 6*7)

= (24+42)

= 66



c) \vec{a} = 5\vec{i} + 3\vec{j} and \vec{b} = 2\vec{i} -4 \vec{j}
Solution:

Here,
\vec{a} = 5\vec{i} + 3\vec{j} = (5,3)

\vec{b} =2\vec{i} -4 \vec{j} = (2,-4)

\vec{a}.\vec{b} = 5*2+ 3*(-4)

= 10-12

= -2



e) \vec{a} = 3\vec{i} + 8\vec{j} and \vec{b} = 5\vec{i} + 12 \vec{j}
Solution:

Here,
\vec{a} = 3\vec{i} + 8\vec{j} = (3,8)

\vec{b} = 5\vec{i} + 12 \vec{j} = (5,12)

\vec{a}.\vec{b} = (3*5+ 8*12)

= (15+96)

= 111



g) \vec{a} = \left ( 6 \\ -4 \right ) and \vec{b} = \left ( -3 \\ -5 \right)

Solution:

\vec{a}.\vec{b} = \left ( 6 \\-4 \right) . \left ( -3 \\ -5 \right)

= 6(-3) + (-4)(-5)

= -18 + 20

= 2





About Readmore Optional Mathematics Book 10

Author: D. R. Simkhada
Editor: I. R. Simkhada

Readmore Publishers and Distributors
T.U. Road, Kuleshwor - 14, Kathmandu, Nepal
Phone: 4672071, 5187211, 5187226
readmorenepal6@gmail.com


About this page:


Class 10 - Scalar Product of Vectors Solved Exercises | Readmore Optional Mathematics is a collection of the solutions related to proofs of scalar product of vectors from the vector chapter for Nepal's Secondary Education Examination (SEE) appearing students.

#Class10