Solution:

Given,

\text{1^{st} expression} = a^4 + a^2b^2 +b^4

\implies (a^2)^2 + (b^2)^2 + a^2b^2

\implies (a^2 + b^2)^2 - 2a^2b^2 + a^2b^2

\implies (a^2 + b^2)^2 - a^2b^2

\implies (a^2 + b^2 - (ab)^2

[ Using a^2 - b^2 = (a+b)(a-b) ]

\implies (a^2 +ab +b^2)(a^2 - ab + b^2)


\text{2^{nd} expression} = a^3 + b^3

\implies (a +b)(a^2 -ab + b^2)


\text{3^{rd} expression} = a^3 - a^2b + ab^2

\implies a(a^2 - ab + b^2)


We know,

\text{Highest Common Factor (H.C.F.) = common factors only

\implies \text{H.C.F.} = (a^2 -ab+b^2)


Read more: