Given,
\text{1^{st} expression} = a^4 + a^2b^2 +b^4
\implies (a^2)^2 + (b^2)^2 + a^2b^2
\implies (a^2 + b^2)^2 - 2a^2b^2 + a^2b^2
\implies (a^2 + b^2)^2 - a^2b^2
\implies (a^2 + b^2 - (ab)^2
[ Using a^2 - b^2 = (a+b)(a-b) ]
\implies (a^2 +ab +b^2)(a^2 - ab + b^2)
\text{2^{nd} expression} = a^3 + b^3
\implies (a +b)(a^2 -ab + b^2)
\text{3^{rd} expression} = a^3 - a^2b + ab^2
\implies a(a^2 - ab + b^2)
We know,
\text{Highest Common Factor (H.C.F.) = common factors only
\implies \text{H.C.F.} = (a^2 -ab+b^2)
Read more:
0 Comments
You can let us know your questions in the comments section as well.