Evaluate the following:
1. $\displaylines{lim \\ x \to 0} \dfrac{sinax}{x}$
Solution:
Given function takes indeterminate (0/0) form at x = 0. So,
$\displaylines{lim \\ x \to 0} \dfrac{sinax}{x} * \dfrac{a}{a}$
$= a * \displaylines{lim \\ x \to 0} \dfrac{sinax}{ax}$
[$\because \displaylines{lim \\x \to 0} \dfrac{sinx}{x} = 1$]
$= a * 1$
$= a$
2. $\displaylines{lim \\ x \to 0} \dfrac{tan bx}{x}$
Solution:
Given function takes indeterminate (0/0) form at x = 0. So,
$\displaylines{lim \\ x \to 0} \dfrac{sinbx}{cosbx} * \dfrac{1}{x}$
$= \displaylines{lim \\x \to 0} \dfrac{sinbx}{cosbx} * \dfrac{b}{b} * \dfrac{1}{x}$
$= b * \displaylines{lim \\x \to 0} \dfrac{sinbx}{bx} * \dfrac{1}{cosbx}$
[$\because \displaylines{lim \\x \to 0} \dfrac{sinx}{x} = 1$]
$ = b * 1 * \dfrac{1}{cos0}$
$= b * 1 * \dfrac{1}{1}$
$= b$
3. $\displaylines{lim \\ x \to 0} \dfrac{\sin mx}{\sin nx}$
Solution:
Given function takes indeterminate (0/0) form at x = 0. So,
$\displaylines{lim \\ x \to 0} \dfrac{\sin mx}{\sin nx} * \dfrac{mx}{mx} * \dfrac{nx}{nx}$
$= \displaylines{lim \\ x \to 0} \dfrac{\sin mx}{mx} * \dfrac{m}{n} * \dfrac{1}{\frac{\sin nx}{nx} }$
$= \dfrac{m}{n} * \displaylines{lim \\ x \to 0} \dfrac{\sin mx}{mx} * \dfrac{1}{\frac{\sin nx}{nx}}$
[$\because \displaylines{lim \\x \to 0} \dfrac{sinx}{x} = 1$]
$= \dfrac{m}{n} * 1 * \dfrac{1}{1}$
$ = \dfrac{m}{n}$
4. $\displaylines{lim \\ x \to 0} \dfrac{tan ax}{tan bx}$
Solution:
Given function takes indeterminate (0/0) form at x = 0. So,
Given function takes indeterminate (0/0) form at x = 0. So,
$\displaylines{lim \\ x \to 0} \dfrac{sinax}{cosax} * \dfrac{cos bx}{sin bx}$
$= \displaylines{lim \\x \to 0}\dfrac{sinax}{sinbx} * \dfrac{cosbx}{cosax}$
$= \displaylines{lim \\ x \to 0}\dfrac{sinax}{sinbx} * \displaylines{lim \\x \to 0}\dfrac{cosbx}{cosax}$
$= \displaylines{lim \\x \to 0} \dfrac{sinax}{ax} * \dfrac{1}{\frac{sin bx}{bx}} * \dfrac{ax}{bx} * \dfrac{cos0}{cos0}$
$= \displaylines{lim \\ x \to 0} \dfrac{sinax}{ax} * \dfrac{1}{\frac{sin bx}{bx}} * \dfrac{a}{b} * \dfrac{1}{1}$
[$\because \displaylines{lim \\x \to 0} \dfrac{sinx}{x} = 1$]
$= 1 * \dfrac{1}{1} * \dfrac{a}{b} * 1$
$= \dfrac{a}{b}$
5. $\displaylines{lim \\ x \to 0} \dfrac{\sin px}{\tan qx}$
Solution:
Here,
The function takes indeterminate (0/0) form at x = 0.
So,
$\displaylines{lim \\ x \to 0} (\sin px ) * \dfrac{ \cos qx}{\sin qx}$
$= \displaylines{lim \\x \to 0}\dfrac{\sin px{{px} * (\cos qx) * \dfrac{1}{\dfrac{\sin qx}{qx}} * \dfrac{px}{qx}$
$= \displaylines{lim \\x \to 0} \dfrac{\sin px}{px} * (\cos qx) * \dfrac{1}{\dfrac{\sin qx}{qx}} * \dfrac{p}{q}$
[$\because \displaylines{lim \\x \to 0} \dfrac{sinx}{x} = 1$]
$= 1 * cos 0 * \dfrac{1}{1} * \dfrac{p}{q}$
$= \dfrac{p}{q}$
6. $\displaylines{lim \\ x \to a} \dfrac{sin ( x-a)}{x^2 - a^2}$
Solution:
Given,
$\displaylines{lim \\ x \to a} \dfrac{sin ( x-a)}{x^2 - a^2}$
$= \displaylines{lim \\ x - a \to a - a} \dfrac{sin(x-a}{(x-a)} × \displaylines{lim \\ x \to a} \dfrac{1}{(x+a)}$
$= \displaylines{lim \\ x- a \to 0} \dfrac{sin(x-a)}{(x-a)} × \dfrac{1}{(a+a)}$
$= 1 × \dfrac{1}{2a}$
$= \dfrac{1}{2a}$
7. $\displaylines{lim \\x \to p} \dfrac{x^2 - p^2}{tan (x - p)}$
Solution:
$\displaylines{lim \\x \to p} \dfrac{x^2 - p^2}{tan (x - p)}$
$= \displaylines{lim \\ x \to p} \dfrac{(x+p)(x-p)}{tan(x-p)}$
$= \displaylines{lim \\ x - p \to p -p} \dfrac{(x-p)}{tan (x -p)} × \displaylines{lim \\ x \to p} (x +p)$
$= \displaylines{lim \\ x - p \to 0} \dfrac{1}{ \frac{tan(x-p)}{(x-p)}} × (p+p)$
$= \dfrac{1}{1} × (2p)$
$= 2p$
8. $\displaylines{lim \\x \to 0} \dfrac{\sin ax * \cos bx}{\sin cx}$
Solution:
$\displaylines{lim \\ x \to 0} \dfrac{\sin ax * \cos bx}{\sin cx}$
$= \displaylines{lim \\ x \to 0} \dfrac{\sin \frac{ax}{ax} × ax × \cos bx}{\sin \frac{cx}{cx} × cx}$
$= 1 × ax × cos(b×0) × \dfrac{1}{1 × cx}$
$= ax × 1 × \dfrac{1}{cx}$
$= \dfrac{a}{c}$
9. $\displaylines{lim \\x \to 0}\dfrac{1 - cosx}{x^2}$
Solution:
Given,
$\displaylines{lim \\x \to 0}\dfrac{1 - cosx}{x^2}$
$= \displaylines{lim \\ x \to 0} \dfrac{2sin^2 \frac{x}{2}}{x^2}$
$= 2× \displaylines{lim \\ x \to 0} \dfrac{sin^2 \frac{x}{2}}{ \left ( \frac{x}{2} \right)^2} × \dfrac{1}{2^2}$
$= 2× 1 × \dfrac{1}{2^2}$
$= \dfrac{1}{2}$
10. $\displaylines{lim \\x \to 0}\dfrac{1- \cos 6x}{x^2}$
Solution:
Given,
$\displaylines{lim \\x \to 0}\dfrac{1- \cos 6x}{x^2}$
$= \displaylines{ lim \\x \to 0} \dfrac{2 sin^2 3x}{x^2}$
$= 2× \displaylines{lim \\x \to 0} \dfrac{sin^2 3x}{(3x)^2} × 3^2$
$= 2 × 1 × 9$
$= 18$
29. Find the limits of:
a) $\displaylines{lim \\ x \to 0} \dfrac{e^{6x} - 1}{x}$
Solution:
Given function takes (0/0) indeterminate form at x = 0 so,
$\displaylines{lim \\ x \to 0} \dfrac{e^{6x} - 1}{x}$
$= \displaylines{lim \\ x \to 0} \dfrac{e^{6x} - 1}{6x} * 6$
$= 6 * \displaylines{lim \\ x \to 0} \dfrac{e^{6x} - 1}{6x}$
$= 6 * 1$
[$ \because \displaylines{lim \\ x \to 0} \dfrac{e^x -1}{x} = 1$]
$= 6$
b) $\displaylines{lim \\ x \to 0} \dfrac{e^{2x} - 1}{x . 2^{x+1}}$
Solution:
Given function takes (0/0) indeterminate form at x = 0
$\displaylines{lim \\ x \to 0} \dfrac{e^{2x} - 1}{x . 2^{x+1}}$
$= \displaylines{ lim \\ x \to 0} \dfrac{e^{2x} -1 }{x * 2^x * 2^1}$
$= \displaylines{lim \\ x \to 0} \ left [ \dfrac{e^{2x} - 1}{2x } * \dfrac{1}{2^x} \right ]$
[$ \because \displaylines{lim \\ x \to 0} \dfrac{e^x -1}{x} = 1$]
$= 1 * \dfrac{1}{2^0}$
$= 1 * 1$
$= 1$
c) $\displaylines{ lim \\ x \to 0} \dfrac{e^{ax} - e^{bx}}{x}$
Solution:
Given function takes (0/0) indeterminate form at x = 0
$\displaylines{ lim \\ x \to 0} \dfrac{e^{ax} - e^b{x} + 1 - 1}{x}$
$= \displaylines{ lim \\ x \to 0} \dfrac{(e^{ax} - 1) - (e^{bx} -1)}{x}$
$= \displaylines{ lim \\ x \to 0} \dfrac{e^{ax}-1}{ax}*a - \displaylines{ lim \\ x \to 0} \dfrac{e^{bx} -1}{bx} * b$
$= (1 * a) - (1 * b)$
$= a - b$
0 Comments
You can let us know your questions in the comments section as well.